-
研究了几种典型气液两相流流型的稳定图特征,并应用随机子空间方法对47种流动条件下的流型信号进行了识别.研究结果表明:稳定图特征能够反映出复杂时间序列的内部特征,利用其提取的直线度特征值可以对时间序列的特征进行量化分析,三种典型流型的稳定图特征差异较明显,泡状流的稳定图特征最为混乱,雾状流次之,段塞流最为规整.应用随机子空间方法对气液两相流图像灰度波动序列进行特征向量提取和辨识,通过幅值以及相角的分布特征能够对不同工况下的流型样本进行准确分类,为多相流的分类提供了一条新路径.同时基于稳定图的分析方法为进一步揭示多相流的流动机理提供有益的探索.The characteristics of stability diagram of several typical flow patterns are studied, and the signals of flow patterns under 47 kinds of flowing conditions are identified with stochastic subspace parameter identification. The results show that the characteristic of a stability diagram can reflect the internal characteristics of complex time series, the characteristics of time series can be quantified by extracted straightness characteristics and the differences of characteristics of stability diagrams of three typical flow patterns. The characteristics of stability diagrams of bubble flow are the most confused and followed by Mist flows'. Slug flows' are the most regular. The extraction and recognition for characteristics of gray fluctuation sequence of gas-liquid two-phase images and the accurate classification for flow pattern samples provide a new path for the classification of multi-phase flow patterns. At the same time, the stability diagram analysis method provides a useful exploration for the further revelation of flowing mechanism of multi-phase flows.
-
Keywords:
- stochastic subspsace parameter identification /
- stability diagram /
- gas-liquid two-phase flow /
- dynamic characteristic
[1] Bai B F, Guo L J, Zhao L 2001 Adv. Mech. 31 437 (in Chinese)[白博峰, 郭烈锦, 赵亮 2001 力学进展 31 437]
[2] Franca F, Acikgoz M, Lahey R T 1991 Int. J. Multiphase Flow. 17 545
[3] Gao Z K, Jin N D 2008 Acta Phys. Sin. 57 6909 (in Chinese)[高忠科, 金宁德 2009 57 6909]
[4] Zong Y B, Jin N D,Wang Z Y 2009 Acta Phys. Sin. 57 7544 (in Chinese)[宗艳波, 金宁德,王 振亚 2009 57 6909]
[5] Do F, Jin N D, Zong Y B 2008 Acta Phys. Sin. 57 6145 (in Chinese)[董芳, 金宁德, 宗艳波 2008 57 6145]
[6] Lardies J 1998 Mech. Sys. Sig. Proces. 12 432
[7] Yang L F,Yu K P, Pang SW2007 J. Vibrat. Shock 26 8 (in Chinese)[杨利芳, 于开平, 庞世伟 2007 振动与冲击 26 8]
[8] Gontier C 2005 Mech. Sys. Sig. Proces. 19 1
[9] Chang J, Zhang Q W, Sun L M 2005 Proceedings of The 2nd International Conference on Structural Health Monitoring of Intelligent in Frastructure, Shenzhen, 863
[10] Huang N E, Shen Z, Long S R 1998 Proceed. Roy. Soc. London 1971 903
[11] Luo W B, Xia S B, Wang L, Zou J X 1999 J. Appl. Mech. 16 112 (in Chinese)[罗文波, 夏松波, 王莉, 邹经湘 1999 应用力学学报 16 112]
[12] Chang J, Sun L M, Zhang Q W 2008 J. Earthquake Engi. Engi. Vibrat. 28 47 (in Chinese)[常军, 孙利民, 张启伟 2008 地震工程与工程振动 28 47]
[13] Zheng G B, Jin N D 2009 Acta Phys. Sin. 58 4485 (in Chinese)[郑桂波, 金宁德 2009 58 4485]
-
[1] Bai B F, Guo L J, Zhao L 2001 Adv. Mech. 31 437 (in Chinese)[白博峰, 郭烈锦, 赵亮 2001 力学进展 31 437]
[2] Franca F, Acikgoz M, Lahey R T 1991 Int. J. Multiphase Flow. 17 545
[3] Gao Z K, Jin N D 2008 Acta Phys. Sin. 57 6909 (in Chinese)[高忠科, 金宁德 2009 57 6909]
[4] Zong Y B, Jin N D,Wang Z Y 2009 Acta Phys. Sin. 57 7544 (in Chinese)[宗艳波, 金宁德,王 振亚 2009 57 6909]
[5] Do F, Jin N D, Zong Y B 2008 Acta Phys. Sin. 57 6145 (in Chinese)[董芳, 金宁德, 宗艳波 2008 57 6145]
[6] Lardies J 1998 Mech. Sys. Sig. Proces. 12 432
[7] Yang L F,Yu K P, Pang SW2007 J. Vibrat. Shock 26 8 (in Chinese)[杨利芳, 于开平, 庞世伟 2007 振动与冲击 26 8]
[8] Gontier C 2005 Mech. Sys. Sig. Proces. 19 1
[9] Chang J, Zhang Q W, Sun L M 2005 Proceedings of The 2nd International Conference on Structural Health Monitoring of Intelligent in Frastructure, Shenzhen, 863
[10] Huang N E, Shen Z, Long S R 1998 Proceed. Roy. Soc. London 1971 903
[11] Luo W B, Xia S B, Wang L, Zou J X 1999 J. Appl. Mech. 16 112 (in Chinese)[罗文波, 夏松波, 王莉, 邹经湘 1999 应用力学学报 16 112]
[12] Chang J, Sun L M, Zhang Q W 2008 J. Earthquake Engi. Engi. Vibrat. 28 47 (in Chinese)[常军, 孙利民, 张启伟 2008 地震工程与工程振动 28 47]
[13] Zheng G B, Jin N D 2009 Acta Phys. Sin. 58 4485 (in Chinese)[郑桂波, 金宁德 2009 58 4485]
计量
- 文章访问数: 7382
- PDF下载量: 473
- 被引次数: 0