搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al原子在Pb基底上的沉积过程研究

黄晓玉 程新路 徐嘉靖 吴卫东

引用本文:
Citation:

Al原子在Pb基底上的沉积过程研究

黄晓玉, 程新路, 徐嘉靖, 吴卫东

Atomistic study of deposition process of Al thin film on Pb substrate

Huang Xiao-Yu, Cheng Xin-Lu, Xu Jia-Jing, Wu Eei-Dong
PDF
导出引用
  • 利用分子动力学方法模拟了Al原子在Pb基底上的沉积过程. 对Al原子在Pb基底(001)面上沉积的形态与Pb原子在Al(001)基底上沉积的形态做了比较. 由于界面间势垒的不同, 两个体系界面间的形态有明显的差异. 分析了基底温度、基底晶面指向、沉积原子的入射动能对界面间原子混合的影响. 模拟结果显示: 随着基底温度升高, 基底原子的可移动性大大增加, 与沉积原子发生较大程度的混合; 入射能的改变对界面间原子的混合影响很小; 基底表面取不同的晶格指向时, 基底与沉积原子间的混合行为也有明显的不同. 利用径向分布函数分析了沉积原子的入射能对薄膜中原子排列有序性的影响. 较高入射能对应更有序的薄膜结构; 由径向分布函数的结构可以推测Al原子在Pb(001)基底表面沉积时界面间可能有金属间化合物生成.
    The deposition processes for Al atoms on Pb (Al/Pb system) surface and Pb atoms on Al surface (Pb/Al system) are studied using molecular dynamic simulations. Under the same deposition conditions, the morphologies of the two systems are very different due to the difference in energy barrier between the interfaces. The substrate temperature, the atom incident energy, and the surface orientation are discussed in terms of their effects on the atom mixing between interfaces. The simulation results show that with the substrate temperature increasing, atomic mobility is enhanced and the degree of atoms mixing between interfaces becomes greater. However, the change of the atom incident energy has little effect on the atoms mixing between interfaces. The atoms mixing is obviously different due to the change of the surface orientation. The analysis on the pair correlation function g(r) indicates that the film formed with higher incident energy has a better quality. The radial distribution function in peak of the intermixing region reveals that a PbAl intermetallic compound may be formed at the interface between Pb and Al.
    [1]

    Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 1124 (in Chinese) [张庆瑜, 马腾才, 潘正英, 汤家镛 2000 49 1124]

    [2]

    Schneider M, Rahman A, Schuller I K 1985 Phys. Rev. Lett. 55 604

    [3]

    Voter A F 1986 Phys. Rev. B 34 6819

    [4]

    Dong L, Smith R W 1996 J. Appl. Phys. 80 5682

    [5]

    Yan C, Duan J H, He X D 2010 Acta Phys. Sin. 59 8807 (in Chinese) [颜超, 段军红, 何兴道 2010 59 8807]

    [6]

    Liu M L, Zhang Z N, Li W, Zhao Q, Qi Y, Zhang L 2009 Acta Phys. Sin. 58 S199 (in Chinese) [刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林 2009 58 S199]

    [7]

    Hong Z H, Hwang S F, Fang T H 2007 Comp. Mater. Sci. 41 70

    [8]

    Zhang L, Feng J Y 2005 Nuclear Instrum. Meth. B 234 487

    [9]

    Johnson E, Johansen A, Dahmen U, Sui M L, Lu K 2001 Mater. Sci. Eng. 1 187.

    [10]

    Zhao J Z, Ratke L 1998 Model. Simul. Mater. Sci. Eng. 6 123

    [11]

    Cole J F, Coodwin F E 1990 J. Miner. Met. Mater. Soc. 641

    [12]

    Inoue A, Yano N, Matsuzaki K, Masumoto T 1987 J. Mater. Sci. 22 123

    [13]

    Bangert H, Eisenmenger-sitter C, Bergauer A 1996 Surf. Coat. Tech. 80 162

    [14]

    Wang Z 2004 Mater. Rev. 18 239 (in Chinese) [王闸 2004 材料导报 18 239]

    [15]

    Gladkikh N T, Bogatyrenkos I, Kryshtal A P, Sui M L, Lu K 2003 Appl. Surf. Sci. 219 338

    [16]

    Zhang L, Jin Z H, Zhang L H, Sui M L, Lu K 2000 Phys. Rev. Lett. 85 1484

    [17]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [18]

    Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251

    [19]

    Landa A, Wynblatt P, Siegel D J 2000 Acta Mater. 48 1753

    [20]

    Kim S P, Lee S C, Lee K R, Chung Y C 2004 J. Electroceram. 13 315

    [21]

    Chung C Y, Chung Y C 2006 Mater. Lett.. 60 1063

    [22]

    Kim C, Chung Y C 2005 Jpn. J. Appl. Phys. 44 5700

    [23]

    Kim S P, Chung Y C 2004 J. Korean Phys. Soc. 44 18

    [24]

    Zhang Q Y 1999 J. Dalian Univ. Tech. 39 730 (in Chinese) [张庆瑜 1999 大连理工大学学报 39 730]

    [25]

    Kim S P, Chung Y C, Lee S C, Lee K R, Lee K H 2003 J. Appl. Phys. 93 8564

    [26]

    Kim S P, Lee S C, Lee K R, Chung Y C 2004 Jpn. J. Appl. Phys. 43 3818

    [27]

    Kim S P, Chung Y C, Lee S C, Lee K R 2004 J. Korean Phys. Soc. 44 18

    [28]

    Lee S G, Kim S P, Lee K R, Chung Y C 2005 J. Magn. Magn. Mater. 286 394

  • [1]

    Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 1124 (in Chinese) [张庆瑜, 马腾才, 潘正英, 汤家镛 2000 49 1124]

    [2]

    Schneider M, Rahman A, Schuller I K 1985 Phys. Rev. Lett. 55 604

    [3]

    Voter A F 1986 Phys. Rev. B 34 6819

    [4]

    Dong L, Smith R W 1996 J. Appl. Phys. 80 5682

    [5]

    Yan C, Duan J H, He X D 2010 Acta Phys. Sin. 59 8807 (in Chinese) [颜超, 段军红, 何兴道 2010 59 8807]

    [6]

    Liu M L, Zhang Z N, Li W, Zhao Q, Qi Y, Zhang L 2009 Acta Phys. Sin. 58 S199 (in Chinese) [刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林 2009 58 S199]

    [7]

    Hong Z H, Hwang S F, Fang T H 2007 Comp. Mater. Sci. 41 70

    [8]

    Zhang L, Feng J Y 2005 Nuclear Instrum. Meth. B 234 487

    [9]

    Johnson E, Johansen A, Dahmen U, Sui M L, Lu K 2001 Mater. Sci. Eng. 1 187.

    [10]

    Zhao J Z, Ratke L 1998 Model. Simul. Mater. Sci. Eng. 6 123

    [11]

    Cole J F, Coodwin F E 1990 J. Miner. Met. Mater. Soc. 641

    [12]

    Inoue A, Yano N, Matsuzaki K, Masumoto T 1987 J. Mater. Sci. 22 123

    [13]

    Bangert H, Eisenmenger-sitter C, Bergauer A 1996 Surf. Coat. Tech. 80 162

    [14]

    Wang Z 2004 Mater. Rev. 18 239 (in Chinese) [王闸 2004 材料导报 18 239]

    [15]

    Gladkikh N T, Bogatyrenkos I, Kryshtal A P, Sui M L, Lu K 2003 Appl. Surf. Sci. 219 338

    [16]

    Zhang L, Jin Z H, Zhang L H, Sui M L, Lu K 2000 Phys. Rev. Lett. 85 1484

    [17]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [18]

    Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251

    [19]

    Landa A, Wynblatt P, Siegel D J 2000 Acta Mater. 48 1753

    [20]

    Kim S P, Lee S C, Lee K R, Chung Y C 2004 J. Electroceram. 13 315

    [21]

    Chung C Y, Chung Y C 2006 Mater. Lett.. 60 1063

    [22]

    Kim C, Chung Y C 2005 Jpn. J. Appl. Phys. 44 5700

    [23]

    Kim S P, Chung Y C 2004 J. Korean Phys. Soc. 44 18

    [24]

    Zhang Q Y 1999 J. Dalian Univ. Tech. 39 730 (in Chinese) [张庆瑜 1999 大连理工大学学报 39 730]

    [25]

    Kim S P, Chung Y C, Lee S C, Lee K R, Lee K H 2003 J. Appl. Phys. 93 8564

    [26]

    Kim S P, Lee S C, Lee K R, Chung Y C 2004 Jpn. J. Appl. Phys. 43 3818

    [27]

    Kim S P, Chung Y C, Lee S C, Lee K R 2004 J. Korean Phys. Soc. 44 18

    [28]

    Lee S G, Kim S P, Lee K R, Chung Y C 2005 J. Magn. Magn. Mater. 286 394

  • [1] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟.  , 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [3] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [4] 付宝勤, 侯氢, 汪俊, 丘明杰, 崔节超. 钨空位捕获氢及其解离过程的分子动力学.  , 2019, 68(24): 240201. doi: 10.7498/aps.68.20190701
    [5] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟.  , 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [6] 梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺. 温度及深度对钛中氦泡释放过程影响的分子动力学研究.  , 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [7] 陈基, 冯页新, 李新征, 王恩哥. 基于路径积分分子动力学与热力学积分方法的高压氢自由能计算.  , 2015, 64(18): 183101. doi: 10.7498/aps.64.183101
    [8] 颜超, 黄莉莉, 何兴道. 入射能量对Au/Au(111)薄膜生长影响的分子动力学模拟.  , 2014, 63(12): 126801. doi: 10.7498/aps.63.126801
    [9] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟.  , 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [10] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究.  , 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [11] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟.  , 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [12] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟.  , 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [13] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算.  , 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [14] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟.  , 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [15] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟.  , 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [16] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟.  , 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [17] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟.  , 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [18] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究.  , 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [19] 杨全文, 朱如曾, 文玉华. 纳米铜团簇在常温和升温过程中能量特征的分子动力学研究.  , 2005, 54(1): 89-95. doi: 10.7498/aps.54.89
    [20] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程.  , 2003, 52(9): 2254-2258. doi: 10.7498/aps.52.2254
计量
  • 文章访问数:  6091
  • PDF下载量:  464
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-22
  • 修回日期:  2011-04-20
  • 刊出日期:  2012-01-05

/

返回文章
返回
Baidu
map