-
采用离子注入法制备了钴离子掺杂的金红石相TiO2样品;离子注入能量、注量分别为40 keV(11016cm-2),80 keV(51015,11016,51016,11017cm-2),120 keV(11016cm-2). 通过XRD,XPS和UV-Vis等手段对掺杂前后样品的结构和光学性能进行了表征,分析了掺杂元素在金红石TiO2中的存在形式. XRD测试表明随着注入能量的增加晶体的损伤程度增加. UV-Vis测试表明掺杂后所有样品在可见光区的吸收增强; 并且随着注量的增加,注量为51015cm-2到51016cm-2范围内注入样品的光学带隙逐渐变小.Ion implantation technique is used for doping Co+ to single crystal TiO2(001). The implanted energies and the fluences of Co+ are 40keV and 11016cm-2; 80 keV and 51015, 11016, 51016, 11017cm-2; 120 keV and 11016cm-2, respectively. And then, the structural and the optical properties of all samples are characterized by using X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), UV - Vis diffuse reflectance spectroscopy (UV-Vis DRS), and these impurities in implanted samples are also analyzed. From the XRD spectra of implanted samples we observe that the greater damage is caused with the increase of the kinetic energy of incident ions. UV - Vis diffuse reflectance spectroscopy measurement shows that the absorbance of visible band is enhanced in all the implanted samples, and the optical band gap decreases with implanted ion fluence increasing from 51015cm-2 to 51016cm-2.
-
Keywords:
- Co /
- TiO2 /
- ion implantation /
- doped
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Jaewon P, Lee J Y, Cho J H 2006 J. Appl. Phys. 100 113534
[3] [4] Asahi R, Morikawa T, Ohwa T W, Aoki K, Taga Y 2001 Science 293 269
[5] [6] ORegan B, Gratzel M 1991 Nature 353 737
[7] [8] [9] Irie H,Watanabe Y,Hashimoto K 2003 J. Phys. Chem. B 107 5483
[10] [11] Umebayashi T,Ymaki T,Itoh H,Asai K 2002 Appl. Phys. Lett. 81 454
[12] [13] Nguyen H H, Joe S, Awatef H 2004 Appl. Phys. Lett. 84 2602
[14] [15] Shutthanandan V, The vuthasan S, Droubay T, Healda S M, Engelhard M H, Mccready D E, Chambers S A, Nachimuthu P, Mun B S 2006 Nucl. Instr. and Meth. B 242 198
[16] [17] Herng T S, Chen J S, Yasui N 2006 J. Appl. Phys. 99 086101
[18] Wang Z J, Tang J, Chen Y X, Spinu L, Zhou W L, Tung L D 2004 J. Appl. Phys. 95 7384
[19] [20] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862(in Chinese)[侯清玉、张 跃、张 涛 2008 57 1862]
[21] [22] [23] Lin F, Zheng F W, Quyang F P 2009 Acta Phys. Sin. 58 193 (in Chinese)[林 峰、郑法伟、欧阳方平 2009 58 193]
[24] [25] Zhang L, Deng N, Ren M, Dong H, Chen P Y 2007 Chin. Phys. 16 1440
[26] [27] Ding P, Liu F M, Yang X A, Li J Q 2008 Chin. Phys. B 17 721
[28] [29] Thomas B S, Marks N A, Devanathan 2005 Nucl. Instr. and Meth. B 239 191
-
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Jaewon P, Lee J Y, Cho J H 2006 J. Appl. Phys. 100 113534
[3] [4] Asahi R, Morikawa T, Ohwa T W, Aoki K, Taga Y 2001 Science 293 269
[5] [6] ORegan B, Gratzel M 1991 Nature 353 737
[7] [8] [9] Irie H,Watanabe Y,Hashimoto K 2003 J. Phys. Chem. B 107 5483
[10] [11] Umebayashi T,Ymaki T,Itoh H,Asai K 2002 Appl. Phys. Lett. 81 454
[12] [13] Nguyen H H, Joe S, Awatef H 2004 Appl. Phys. Lett. 84 2602
[14] [15] Shutthanandan V, The vuthasan S, Droubay T, Healda S M, Engelhard M H, Mccready D E, Chambers S A, Nachimuthu P, Mun B S 2006 Nucl. Instr. and Meth. B 242 198
[16] [17] Herng T S, Chen J S, Yasui N 2006 J. Appl. Phys. 99 086101
[18] Wang Z J, Tang J, Chen Y X, Spinu L, Zhou W L, Tung L D 2004 J. Appl. Phys. 95 7384
[19] [20] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862(in Chinese)[侯清玉、张 跃、张 涛 2008 57 1862]
[21] [22] [23] Lin F, Zheng F W, Quyang F P 2009 Acta Phys. Sin. 58 193 (in Chinese)[林 峰、郑法伟、欧阳方平 2009 58 193]
[24] [25] Zhang L, Deng N, Ren M, Dong H, Chen P Y 2007 Chin. Phys. 16 1440
[26] [27] Ding P, Liu F M, Yang X A, Li J Q 2008 Chin. Phys. B 17 721
[28] [29] Thomas B S, Marks N A, Devanathan 2005 Nucl. Instr. and Meth. B 239 191
计量
- 文章访问数: 9028
- PDF下载量: 650
- 被引次数: 0