搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弱相干态光源的非正交编码被动诱骗态量子密钥分配

周媛媛 周学军

引用本文:
Citation:

基于弱相干态光源的非正交编码被动诱骗态量子密钥分配

周媛媛, 周学军

Nonorthogonal passive decoy-state quantum key distribution with a weak coherent state source

Zhou Yuan-Yuan, Zhou Xue-Jun
PDF
导出引用
  • 基于改造的弱相干态光源,提出了一种非正交编码被动诱骗态量子密钥分配方案.该方案不主动制备诱骗态,而是根据发送端探测器是否响应,将接收端的探测结果分为响应集合和未响应集合,以此分别作为信号态和诱骗态,并利用这两个集合来估计参量和生成密钥.数值仿真表明,非正交编码被动诱骗态方案的密钥生成效率和安全传输距离都优于现有的被动诱骗态方案,且性能非常接近主动无穷诱骗态方案的理论极限值;未响应集合对密钥生成的参与使方案性能免受发送端探测效率的影响,弥补了实际探测器探测效率低下的缺陷;由于不需要主动制备诱骗态,该方案实现非常简单,适用于高速量子密钥分配的场合.
    A nonorthogonal passive decoy-state method is presented with a reconstructive weak coherent state source. The method dose not prepare decoy states actively and divides the receiver detection events into two groups, i.e., triggered components and nontriggered components, according to triggering situation of the sender detector. Both triggered and nontriggered components, as signal states and decoy states, are used to do some estimations and to generate secure key. The simulation results show that a better key generation rate and a longer secure transmission distance can be obtained with the nonorthogonal passive decoy-state method than with the existing passive methods, and that the performance is comparable to the theoretical limit of an active infinite decoy-state protocol. Furthermore, the nontriggered component contribution to key generation offsets the limitation of the detector low efficiency, and the performance of the method dose not depend on the detector efficiency of sender. Because decoy states need not be prepared actively, and our protocol is easy to implement and apply to quantum key distribution at high transmission rates.
    • 基金项目: 国家高技术研究发展计划(批准号: 2009AAJ128)资助的课题.
    [1]

    Hwang W Y 2003 Phys.Rev.Lett. 91 057901

    [2]
    [3]

    Wang X B 2005 Phys.Rev.Lett. 94 230503

    [4]
    [5]

    Wang X B 2005 Phys. Rev. A 72 012322

    [6]

    Lo H K, MA X F, Chen K 2005 Phys. Rew. Lett. 94 230504

    [7]
    [8]
    [9]

    Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304

    [10]
    [11]

    Peng C Z, Zhang J, Yang D, Gao W B, Ma H X, Yin H, Zeng H P, Yang T, Wang X B, Pan J W 2007 Phys. Rev. Lett. 98 010505

    [12]
    [13]

    Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G C 2008 Chin.Phys.Lett. 25 3547

    [14]

    Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rew. Lett. 100 090501

    [15]
    [16]

    Bennett C H , Brassard G 1984 Processing of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175

    [17]
    [18]
    [19]

    MA X F, Qi B, ZhaoY, Lo H K 2005 Phys. Rew. A 72 012326

    [20]
    [21]

    Li J B, Fang X M 2006 Chin. Phys. Lett. 23 775

    [22]
    [23]

    Wang Q,Wang X B,Guo G C 2007 Phys. Rew. A 75 012312

    [24]
    [25]

    Yin Z Q, Han Z F, Sun F W, Guo G C 2007 Phys. Rev. A 76 014304

    [26]
    [27]

    Mi J L, Wang F Q, Lin Q Q, Liang R S 2008 Chin. Phys. B 17 1178

    [28]
    [29]

    Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏、王金东、黄宇娴、刘颂豪、路 巍 2010 59 287]

    [30]

    Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆、王发强、林青群、梁瑞生、刘颂豪 2008 57 678]

    [31]
    [32]
    [33]

    Mauerer W,Silberhorn C 2007 Phys. Rew. A 75 050305

    [34]
    [35]

    Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503

    [36]

    Quan D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese) [权东晓、裴昌幸、朱畅华、刘 丹 2008 57 5600]

    [37]
    [38]

    Ma Xiongfeng, Lo H K 2008 New Journal of Physics 10 073018

    [39]
    [40]

    Curty M, Moroder T, Ma X F, Ltkenhaus N 2009 Opt.Lett. 34 3238

    [41]
    [42]

    Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rew. A 81 022310

    [43]
    [44]
    [45]

    Scarani V, Acin A, Ribordy G, Gisi N 2004 Phys. Rev. Lett. 92 057901

    [46]
    [47]

    Fung C H F,Tamaki K,Lo H K 2006 Phys. Rew. A 73 012337

    [48]
    [49]

    Gottesman D, Lo H K, Ltkenhaus N, Preskill J 2004 Quantum Inform. Comput. 4 325

    [50]

    Gobby C, Yuan Z L, Shields A J 2004 Phys. Rew. Lett. 84 3762

    [51]
    [52]

    Wang X B 2007 Phys. Rew. A 75 052301

    [53]
    [54]

    Wang X B, Peng C Z, Zhang J, Yang L, Pan J W 2008 Phys. Rew. A 77 042311

    [55]
    [56]
    [57]

    Zhao Y, Qi Bing, Lo H K 2008 Phys. Rew. A 77 052327

    [58]

    Hu J Z, Wang X B 2010 Phys. Rew. A 82 012331

    [59]
  • [1]

    Hwang W Y 2003 Phys.Rev.Lett. 91 057901

    [2]
    [3]

    Wang X B 2005 Phys.Rev.Lett. 94 230503

    [4]
    [5]

    Wang X B 2005 Phys. Rev. A 72 012322

    [6]

    Lo H K, MA X F, Chen K 2005 Phys. Rew. Lett. 94 230504

    [7]
    [8]
    [9]

    Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304

    [10]
    [11]

    Peng C Z, Zhang J, Yang D, Gao W B, Ma H X, Yin H, Zeng H P, Yang T, Wang X B, Pan J W 2007 Phys. Rev. Lett. 98 010505

    [12]
    [13]

    Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G C 2008 Chin.Phys.Lett. 25 3547

    [14]

    Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rew. Lett. 100 090501

    [15]
    [16]

    Bennett C H , Brassard G 1984 Processing of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175

    [17]
    [18]
    [19]

    MA X F, Qi B, ZhaoY, Lo H K 2005 Phys. Rew. A 72 012326

    [20]
    [21]

    Li J B, Fang X M 2006 Chin. Phys. Lett. 23 775

    [22]
    [23]

    Wang Q,Wang X B,Guo G C 2007 Phys. Rew. A 75 012312

    [24]
    [25]

    Yin Z Q, Han Z F, Sun F W, Guo G C 2007 Phys. Rev. A 76 014304

    [26]
    [27]

    Mi J L, Wang F Q, Lin Q Q, Liang R S 2008 Chin. Phys. B 17 1178

    [28]
    [29]

    Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏、王金东、黄宇娴、刘颂豪、路 巍 2010 59 287]

    [30]

    Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆、王发强、林青群、梁瑞生、刘颂豪 2008 57 678]

    [31]
    [32]
    [33]

    Mauerer W,Silberhorn C 2007 Phys. Rew. A 75 050305

    [34]
    [35]

    Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503

    [36]

    Quan D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese) [权东晓、裴昌幸、朱畅华、刘 丹 2008 57 5600]

    [37]
    [38]

    Ma Xiongfeng, Lo H K 2008 New Journal of Physics 10 073018

    [39]
    [40]

    Curty M, Moroder T, Ma X F, Ltkenhaus N 2009 Opt.Lett. 34 3238

    [41]
    [42]

    Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rew. A 81 022310

    [43]
    [44]
    [45]

    Scarani V, Acin A, Ribordy G, Gisi N 2004 Phys. Rev. Lett. 92 057901

    [46]
    [47]

    Fung C H F,Tamaki K,Lo H K 2006 Phys. Rew. A 73 012337

    [48]
    [49]

    Gottesman D, Lo H K, Ltkenhaus N, Preskill J 2004 Quantum Inform. Comput. 4 325

    [50]

    Gobby C, Yuan Z L, Shields A J 2004 Phys. Rew. Lett. 84 3762

    [51]
    [52]

    Wang X B 2007 Phys. Rew. A 75 052301

    [53]
    [54]

    Wang X B, Peng C Z, Zhang J, Yang L, Pan J W 2008 Phys. Rew. A 77 042311

    [55]
    [56]
    [57]

    Zhao Y, Qi Bing, Lo H K 2008 Phys. Rew. A 77 052327

    [58]

    Hu J Z, Wang X B 2010 Phys. Rew. A 82 012331

    [59]
  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制.  , 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制.  , 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] 张佳一, 陈华星, 张桓毓, 钱雪瑞, 张春辉, 王琴. 基于被动式光源监控的参考系无关量子密钥分发.  , 2023, 72(15): 150301. doi: 10.7498/aps.72.20230609
    [4] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制.  , 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [5] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备.  , 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [6] 安雪碧, 银振强, 韩正甫. 光学体系宏观-微观纠缠及其在量子密钥分配中的应用.  , 2015, 64(14): 140303. doi: 10.7498/aps.64.140303
    [7] 赵峰. 单向量子密钥纠错协议的纠错性能仿真分析.  , 2013, 62(20): 200303. doi: 10.7498/aps.62.200303
    [8] 焦荣珍, 丁天, 王文集, 马海强. 基于不可信光源的量子密钥分配的统计特性研究.  , 2013, 62(18): 180302. doi: 10.7498/aps.62.180302
    [9] 郭邦红, 杨理, 向憧, 关翀, 吴令安, 刘颂豪. 联合调制量子密钥分配系统.  , 2013, 62(13): 130303. doi: 10.7498/aps.62.130303
    [10] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析.  , 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [11] 卢道明. 三参数双模压缩粒子数态的量子特性.  , 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [12] 焦荣珍, 唐少杰, 张弨. 诱惑态量子密钥分配系统中统计涨落的研究.  , 2012, 61(5): 050302. doi: 10.7498/aps.61.050302
    [13] 焦荣珍, 张弨, 马海强. 基于实用光源的诱惑态量子密钥分配研究.  , 2011, 60(11): 110303. doi: 10.7498/aps.60.110303
    [14] 王涵, 闫连山, 潘炜, 罗斌, 郭振, 徐明峰. 基于两种光源的诱发态量子密钥分配性能分析.  , 2011, 60(3): 030304. doi: 10.7498/aps.60.030304
    [15] 郭邦红, 路轶群, 王发强, 赵 峰, 胡 敏, 林一满, 廖常俊, 刘颂豪. 相位调制量子密钥分配系统中低频振动相移的实时跟踪补偿.  , 2007, 56(7): 3695-3702. doi: 10.7498/aps.56.3695
    [16] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响.  , 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [17] 杨宇光, 温巧燕, 朱甫臣. 一种新的利用不可扩展乘积基和严格纠缠基的量子密钥分配方案.  , 2005, 54(12): 5549-5553. doi: 10.7498/aps.54.5549
    [18] 杨宇光, 温巧燕, 朱甫臣. 一种网络多用户量子认证和密钥分配理论方案.  , 2005, 54(9): 3995-3999. doi: 10.7498/aps.54.3995
    [19] 杨宇光, 温巧燕, 朱甫臣. 基于纠缠交换的多方多级量子密钥分配协议.  , 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
    [20] 张权, 唐朝京, 张森强. B92量子密钥分配协议的变形及其无条件安全性证明.  , 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
计量
  • 文章访问数:  9709
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-29
  • 修回日期:  2010-12-10
  • 刊出日期:  2011-05-05

/

返回文章
返回
Baidu
map