-
为解决准横电磁(TEM)模波导工作带宽较窄的问题,提出采用金属贴片电磁带隙(EBG)结构在金属波导中创建准TEM波.通过理论分析和数值计算,研究金属贴片EBG结构创建准TEM波导对展宽带宽、改善传输特性和增强准TEM波电场分布均匀性的作用.模拟结果表明,在频率14 GHz附近,金属贴片EBG将TE10模成功转换成准TEM模,转换带宽达到1.7 GHz,且在波导横截面83.9%的面积上电场分布均匀性达到84.7%.
-
关键词:
- 电磁带隙 /
- 金属贴片电磁带隙结构 /
- 磁导体 /
- 准横电磁模波导
To solve the narrow operation-band of the electromagnetic bandgap (EBG) waveguide, a quasi transverse electromagnetic (TEM) mode waveguide using the metal-patch EBG structure as sidewall is proposed in this paper. Theoretical analysis and numerical calculation show that broader bandwidth, better transportation property, and more uniform electric field distribution of the quasi-TEM mode can be reached. Simulation results using Ansoft HFSS indicate that the metal-patch EBG structure can convert TE10 mode into quasi-TEM mode in the central frequency of 14 GHz with a bandwidth of 1.7 GHz and the uniformity of electric field distribution reaches 84.7% in 83.9% cross section area.-
Keywords:
- electromagnetic bandgap /
- metal-patch electromagnetic bandgap structure /
- magnetic conductor /
- quasi transverse electromagnetic mode waveguide
[1] Harvey J, Brown E R, Rutledg D B, York R A 2000 IEEE Microwave Mag. 48 48
[2] [3] Delisio M P, York R A 2002 IEEE Trans. Microwave Theory Tech. 50 929
[4] Jia P C, Chen L Y, Alexanian A, York R A 2002 IEEE Trans. Microwave Theory Tech. 50 1355
[5] [6] Belaid M B, Wu K 2003 IEEE Trans. Microwave Theory Tech. 51 684
[7] [8] [9] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[10] [11] John S 1987 Phys. Rev. Lett. 58 2486
[12] Ni P G 2010 Acta Phys. Sin. 59 340 (in Chinese) [倪培根 2010 59 340]
[13] [14] [15] Falcone F, Lopetegi T, Sorolla M 1999 Microwave Opt. Tech. Lett. 22 223
[16] [17] Liu H W, Sun X W, Li Z F, Qian R, Zhou M 2003 Acta Phys. Sin. 52 3082 (in Chinese) [刘海文、孙晓玮、李征帆、钱 蓉、周 旻 2003 52 3082]
[18] Yang F R, Ma K P, Qian Y, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 1509
[19] [20] Coccioli R, Yang F R, Ma K P, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 2123
[21] [22] [23] Jim M, Hacker J B, Sailer A L, Kim S, Sievenpiper D, Higgins J A 1999 IEEE MTT-S Int. Microwave Symp. Dig. 47 543
[24] [25] Xin H, Chen T C, Kazemi H 2008 IEEE Trans. Antennas Propag. 56 166
[26] [27] Yang F R, Ma K P, Qian Y, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 2092
[28] Sievenpiper D, Zhang L, Broas R F J, Alexopolous N, Yablonovitch E 1999 IEEE Trans. Microwave Theory Tech. 47 2059
[29] -
[1] Harvey J, Brown E R, Rutledg D B, York R A 2000 IEEE Microwave Mag. 48 48
[2] [3] Delisio M P, York R A 2002 IEEE Trans. Microwave Theory Tech. 50 929
[4] Jia P C, Chen L Y, Alexanian A, York R A 2002 IEEE Trans. Microwave Theory Tech. 50 1355
[5] [6] Belaid M B, Wu K 2003 IEEE Trans. Microwave Theory Tech. 51 684
[7] [8] [9] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[10] [11] John S 1987 Phys. Rev. Lett. 58 2486
[12] Ni P G 2010 Acta Phys. Sin. 59 340 (in Chinese) [倪培根 2010 59 340]
[13] [14] [15] Falcone F, Lopetegi T, Sorolla M 1999 Microwave Opt. Tech. Lett. 22 223
[16] [17] Liu H W, Sun X W, Li Z F, Qian R, Zhou M 2003 Acta Phys. Sin. 52 3082 (in Chinese) [刘海文、孙晓玮、李征帆、钱 蓉、周 旻 2003 52 3082]
[18] Yang F R, Ma K P, Qian Y, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 1509
[19] [20] Coccioli R, Yang F R, Ma K P, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 2123
[21] [22] [23] Jim M, Hacker J B, Sailer A L, Kim S, Sievenpiper D, Higgins J A 1999 IEEE MTT-S Int. Microwave Symp. Dig. 47 543
[24] [25] Xin H, Chen T C, Kazemi H 2008 IEEE Trans. Antennas Propag. 56 166
[26] [27] Yang F R, Ma K P, Qian Y, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 2092
[28] Sievenpiper D, Zhang L, Broas R F J, Alexopolous N, Yablonovitch E 1999 IEEE Trans. Microwave Theory Tech. 47 2059
[29]
计量
- 文章访问数: 7484
- PDF下载量: 787
- 被引次数: 0