搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ca位置换Fe的氧化物Ca1-xFexMnO3(x=00.12)的制备及电输运性能

张飞鹏 张忻 路清梅 刘燕琴 张久兴

引用本文:
Citation:

Ca位置换Fe的氧化物Ca1-xFexMnO3(x=00.12)的制备及电输运性能

张飞鹏, 张忻, 路清梅, 刘燕琴, 张久兴

Preparation and electrical transport properties of Fe doped Ca1-xFexMnO3(x=00.12) oxide

Zhang Fei-Peng, Zhang Xin, Lu Qing-Mei, Liu Yan-Qin, Zhang Jiu-Xing
PDF
导出引用
  • 采用柠檬酸溶胶凝胶结合陶瓷烧结工艺制备了Ca位置换Fe的Ca1-xFexMnO3(x=00.12)氧化物粉末及块体试样,通过X射线衍射及电参数测试分析了所得试样.实验结果表明:在实验范围内,所有试样呈单一物相,Ca位置换Fe之后随置换量的增加,CaMnO3的晶胞逐渐变小,晶粒长大受到抑制.测试温度范围内所有试样均呈半导体输运特性,电输运机制未发生变化;当x在0
    The Fe doped Ca1-xFexMnO3(x=00.12) powder and bulk samples are fabricated by citric acid sol-gel and ceramic preparation process, the samples are analzed by X-ray diffraction pattern and electrical constant measurement. The results show that all samples are of single phase, the lattice constants are gradually lowered by Fe doping for Ca site, and the crystalline grain growth is restrained. All the bulk samples have semiconductor transporting characteristics in the whole temperature range of measurement. The transportation mechanism is not changed. The energy for polarons to hop is increased for doped samples and thus the electrical resistivity is increased by increasing Fe doping concentration.
    • 基金项目: 国家自然科学基金(批准号:50702003,50801002)资助的课题.
    [1]

    Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R, Chen L H 1994 Science 264 413

    [2]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336

    [3]
    [4]
    [5]

    Urushibara A, Moritomo Y, Arima T, Asaamitsu A, Kido G, Tokura Y 1995 Phys. Rev. B 51 14103

    [6]
    [7]

    Maignan A, Martin C, Damay F, Raveau B 1998 Chem. Mater. 10 950

    [8]

    Zhou Q, Kennedy B J 2006 J. Phys. Chem. Solids 67 1595

    [9]
    [10]
    [11]

    Wollan E O, Koehler W C 1955 Phys. Rev. 100 545

    [12]

    Yang Z Q, Sun Q, Ye L, Xie X D 1998 Chin. Phys. B 7 851

    [13]
    [14]

    Xiang P, Kinemuchi Y, Kaga H, Watari K 2008 J. Alloys Compd. 454 364

    [15]
    [16]
    [17]

    Sousa D, Nunes M R, Silveira C, Matos I, Lopes A B, Jorge M E M 2008 Mater. Chem. Phys. 109 311

    [18]

    Fan X J, Koinuma H, Hasegawa T 2003 Physica B 329333 723

    [19]
    [20]
    [21]

    Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H 1995 J. Solid State Chem. 120 105

    [22]
    [23]

    Zhou Y, Matsubara I, Funahashi R, Xu G, Shikano M 2003 Mater. Res. Bull. 38 341

    [24]

    Kumar N, Kishan H, Rao A, Awana V P S 2010 J. Alloys Compd. 502 283

    [25]
    [26]

    Wang Y, Sui Y, Ren P, Wang L, Wang X, Su W, Fan H 2010 Inorg. Chem. 49 3216

    [27]
    [28]

    Park J W, Kwak D H, Yoon S H, Choi S C 2009 J. Alloys Compd. 487 550

    [29]
    [30]
    [31]

    Ang R, Sun Y P, Ma Y Q, Zhao B C, Zhu X B, Song W H 2006 J. Appl. Phys. 100 063902

    [32]
    [33]

    Miclau M, Hbert S, Retoux R, Martin C 2005 J. Solid State Chem. 178 1104

    [34]

    Matsukawa M, Tamura A, Yamato Y, Kumagai T, Nimori S, Suryanarayanan R 2007 J. Magn. Magn. Mater. 310 e283

    [35]
    [36]
    [37]

    Zhang F P, Lu Q M, Zhang X, Zhang J X 2011 J. Alloys Compd. 509 542

    [38]
    [39]

    Gil de Muro I, Insausti M, Lezama L, Rojo T 2005 J. Solid State Chem. 178 928

    [40]
    [41]

    Lu Q M, Zhang B X, Zhang F P, Zhang X, Zhang J X 2010 J. Chin. Rare Earth Soc. 28 471 (in Chinese) [路清梅、张冰心、张飞鹏、张 忻、张久兴 2010 中国稀土学报 28 471]

    [42]

    Patterson A L 1939 Phys. Rev. 56 978

    [43]
    [44]
    [45]

    Cong B T, Tsuji T, Thao P X, Thanh P Q, Yamamura Y 2004 Physca B 352 18

    [46]
    [47]

    Zhang F P, Zhang X, Lu Q M, Zhang J X 2010 Acta Phys. Sin. 59 4211 (in Chinese) [张飞鹏、张 忻、路清梅、张久兴 2010 59 4211]

    [48]
    [49]

    Mott N F, Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon Press) p41

  • [1]

    Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R, Chen L H 1994 Science 264 413

    [2]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336

    [3]
    [4]
    [5]

    Urushibara A, Moritomo Y, Arima T, Asaamitsu A, Kido G, Tokura Y 1995 Phys. Rev. B 51 14103

    [6]
    [7]

    Maignan A, Martin C, Damay F, Raveau B 1998 Chem. Mater. 10 950

    [8]

    Zhou Q, Kennedy B J 2006 J. Phys. Chem. Solids 67 1595

    [9]
    [10]
    [11]

    Wollan E O, Koehler W C 1955 Phys. Rev. 100 545

    [12]

    Yang Z Q, Sun Q, Ye L, Xie X D 1998 Chin. Phys. B 7 851

    [13]
    [14]

    Xiang P, Kinemuchi Y, Kaga H, Watari K 2008 J. Alloys Compd. 454 364

    [15]
    [16]
    [17]

    Sousa D, Nunes M R, Silveira C, Matos I, Lopes A B, Jorge M E M 2008 Mater. Chem. Phys. 109 311

    [18]

    Fan X J, Koinuma H, Hasegawa T 2003 Physica B 329333 723

    [19]
    [20]
    [21]

    Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H 1995 J. Solid State Chem. 120 105

    [22]
    [23]

    Zhou Y, Matsubara I, Funahashi R, Xu G, Shikano M 2003 Mater. Res. Bull. 38 341

    [24]

    Kumar N, Kishan H, Rao A, Awana V P S 2010 J. Alloys Compd. 502 283

    [25]
    [26]

    Wang Y, Sui Y, Ren P, Wang L, Wang X, Su W, Fan H 2010 Inorg. Chem. 49 3216

    [27]
    [28]

    Park J W, Kwak D H, Yoon S H, Choi S C 2009 J. Alloys Compd. 487 550

    [29]
    [30]
    [31]

    Ang R, Sun Y P, Ma Y Q, Zhao B C, Zhu X B, Song W H 2006 J. Appl. Phys. 100 063902

    [32]
    [33]

    Miclau M, Hbert S, Retoux R, Martin C 2005 J. Solid State Chem. 178 1104

    [34]

    Matsukawa M, Tamura A, Yamato Y, Kumagai T, Nimori S, Suryanarayanan R 2007 J. Magn. Magn. Mater. 310 e283

    [35]
    [36]
    [37]

    Zhang F P, Lu Q M, Zhang X, Zhang J X 2011 J. Alloys Compd. 509 542

    [38]
    [39]

    Gil de Muro I, Insausti M, Lezama L, Rojo T 2005 J. Solid State Chem. 178 928

    [40]
    [41]

    Lu Q M, Zhang B X, Zhang F P, Zhang X, Zhang J X 2010 J. Chin. Rare Earth Soc. 28 471 (in Chinese) [路清梅、张冰心、张飞鹏、张 忻、张久兴 2010 中国稀土学报 28 471]

    [42]

    Patterson A L 1939 Phys. Rev. 56 978

    [43]
    [44]
    [45]

    Cong B T, Tsuji T, Thao P X, Thanh P Q, Yamamura Y 2004 Physca B 352 18

    [46]
    [47]

    Zhang F P, Zhang X, Lu Q M, Zhang J X 2010 Acta Phys. Sin. 59 4211 (in Chinese) [张飞鹏、张 忻、路清梅、张久兴 2010 59 4211]

    [48]
    [49]

    Mott N F, Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon Press) p41

  • [1] 赵俊, 姚璨, 曾晖. 新型正交相BN单层半导体有毒气体吸附性能及电输运性能的理论研究.  , 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [2] 杨健, 高矿红, 李志青. La掺杂BaSnO3薄膜的低温电输运性质.  , 2023, 72(22): 227301. doi: 10.7498/aps.72.20231082
    [3] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变.  , 2023, 72(15): 157401. doi: 10.7498/aps.72.20230730
    [4] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [5] 谢忠祥, 喻霞, 贾聘真, 陈学坤, 邓元祥, 张勇, 周五星. 并苯分子结的热电性质.  , 2023, 72(12): 124401. doi: 10.7498/aps.72.20230354
    [6] 王浩林, 宗其军, 黄焱, 陈以威, 朱雨剑, 魏凌楠, 王雷. 二维原子晶体的转移堆叠方法及其高质量电子器件的研究进展.  , 2021, 70(13): 138202. doi: 10.7498/aps.70.20210929
    [7] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性.  , 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [8] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究.  , 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [9] 齐伟华, 马丽, 李壮志, 唐贵德, 吴光恒. 金属价电子结构对磁性和电输运性质的影响.  , 2017, 66(2): 027101. doi: 10.7498/aps.66.027101
    [10] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响.  , 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [11] 张玺, 刘超飞, 王健. 低维超导的实验进展.  , 2015, 64(21): 217405. doi: 10.7498/aps.64.217405
    [12] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运.  , 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [13] 董海明. 低温下二硫化钼电子迁移率研究.  , 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [14] 陈顺生, 黄昌, 王瑞龙, 杨昌平, 孙志刚. Ag/Nd0.7Sr0.3MnO3陶瓷界面电输运性质研究.  , 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
    [15] 罗炳成, 陈长乐, 谢廉. Fe3O4薄膜的电输运及光诱导特性研究.  , 2011, 60(2): 027306. doi: 10.7498/aps.60.027306
    [16] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展.  , 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [17] 张飞鹏, 张忻, 路清梅, 张久兴. Ca3-x AgxCo4O9(x=0—0.05)氧化物的电输运性能.  , 2010, 59(6): 4211-4215. doi: 10.7498/aps.59.4211
    [18] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质.  , 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [19] 熊昌民, 孙继荣, 王登京, 沈保根. 厚度与应变效应对La0.67Ca0.33MnO3薄膜电输运与居里温度的影响.  , 2004, 53(11): 3909-3915. doi: 10.7498/aps.53.3909
    [20] 徐刚毅, 王天民, 何宇亮, 马智训, 郑国珍. 纳米硅薄膜的低温电输运机制.  , 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
计量
  • 文章访问数:  6563
  • PDF下载量:  595
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-26
  • 修回日期:  2011-01-20
  • 刊出日期:  2011-04-05

/

返回文章
返回
Baidu
map