搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷曲方式对Rh原子在单壁碳纳米管内外吸附的影响

刘莎 吴锋民 滕波涛 杨培芳

引用本文:
Citation:

卷曲方式对Rh原子在单壁碳纳米管内外吸附的影响

刘莎, 吴锋民, 滕波涛, 杨培芳

Helicity effects on Rh adsorption behavior inside and outside the single-wall carbon nanotubes

Liu Sha, Wu Feng-Min, Teng Bo-Tao, Yang Pei-Fang
PDF
导出引用
  • 碳纳米管曲率与卷曲方式是同时存在并影响金属原子在碳纳米管内外吸附行为的重要因素, 单独研究卷曲方式对金属吸附行为的影响较困难. 选取曲率相近、卷曲方式不同的扶手椅型(6, 6)、锯齿型(10, 0)与手性(8, 4)单壁碳纳米管(SWCNT), 利用密度泛函理论研究了Rh原子在SWCNT内外的吸附行为. 构型优化表明:由于SWCNT卷曲方式不同, 导致Rh原子在(6, 6),(10, 0)与(8, 4)SWCNT内外吸附的稳定构型不同; 不同卷曲方式亦使SWCNT与Rh原子相互作用的C原子不同, 导致Rh
    The curvature and the helicity of single-wall carbon nanotube (SWCNT) are the important factors which influence the adsorption behaviors of metal atoms inside and outside carbon tubes. However, it is difficult to investigate the separate effects of SWCNT helicity on the adsorption behaviors of metal atoms. In the present work, the armchair (6, 6), zigzag (10, 0), and chiral (8, 4) tubes with similar curvature are selected, then the Rh adsorption behaviors inside and outside the tubes are systematically investigated using the density functional theroy. Due to the different SWCNT helicities, the stable configurations of Rh atoms on tubes are different. The neighbor carbon atoms interacting with Rh atoms vary with tube helicity, therefore, the Rh adsorption energies for a similar configuration are also different. It indicates that the outer charge density of SWCNT is higher than the inner one. Different helicities lead to different charge density variations along the radial direction. Charge density difference shows that the orbital orientations of Rh adatom and the electrons obtained and lost are slightly different due to the different helicities. The bandstructure indicates that the doping band appears near the Fermi energy level. The (6, 6) tube with Rh adatom still exhibits metallicity. When Rh atoms are adsorbed inside the (10, 0) tube, the nanotube transforms from the semiconducting into the metallic one. However, the band gap reduces when Rh atoms adsorbed outside the tube. After the Rh adsorption, the (8, 4) tube band gap reduces.
    • 基金项目: 国家自然科学基金(批准号: 11079029)和浙江省自然科学基金重点项目(批准号: Z6090556)资助的课题.
    [1]

    Iijima S 1991 Nature 354 56

    [2]
    [3]

    Yagi Y, Briere T M, Sluiter M H F, Kumar V, Farajian A A, Kawazoe Y 2004 Phys. Rev. B 69 075414

    [4]
    [5]

    Durgun E, Dag S, Bagci V M K, Glseren O, Yildirim T, Ciraci1 S 2003 Phys. Rev. B 67 201401

    [6]

    Zhang B X, Yang C, Feng Y F, Yu Y 2009 Acta Phys. Sin. 58 4066 (in Chinese) [张变霞、杨 春、冯玉芳、余 毅 2009 58 4066]

    [7]
    [8]

    Bagci V M K, Glseren O, Yildirim T, Gedik Z, Ciraci S 2002 Phys. Rev. B 66 045409

    [9]
    [10]
    [11]

    Jia G X, Li J J, Zhang Y F 2005 Acta Chim. Sin. 63 97(in Chinese) [贾桂霄、李俊篯、章永凡 2005 化学学报 63 97]

    [12]

    Li J, Zhang K W, Meng L J, Liu W L, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese) [李 俊、张凯旺、孟利军、刘文亮、钟建新 2008 57 382]

    [13]
    [14]

    Planeix J M, Coustel N, Coq B, Brotons V, Kumbhar P S, Dutartre R, Geneste P, Bernier P, Ajayan P M 1994 J. Am. Chem. Soc. 116 7935

    [15]
    [16]
    [17]

    Iyakutti K, Bodapati A, Peng X H, Keblinski P, Nayak S K 2006 Phys. Rev. B 73 035413

    [18]

    Kamal C, Chakrabarti A 2007 Phys. Rev. B 76 075113

    [19]
    [20]

    Zhang N, Zhou D L, Zhou Y 2006 Chin. J. Catal. 27 591(in Chinese) [张 宁、周冬兰、周 瑜 2006 催化学报 27 591]

    [21]
    [22]

    Yuan S J, Kong Y, Wen F S, Li F S 2007 J. Phys.: Condens. Matter 19 466203

    [23]
    [24]

    Zhang G Y, Wang E G 2003 Appl. Phys. Lett. 82 1926

    [25]
    [26]
    [27]

    Won C Y, Joseph S, Aluru N R 2006 J. Chem. Phys. 125 114701

    [28]
    [29]

    Agrawal B K, Singh V, Pathak A, Srivastava R 2007 Phys. Rev. B 75 195421

    [30]

    Yang X B, Ni J 2005 Phys. Rev. B 71 165438

    [31]
    [32]
    [33]

    Chen G, Kawazoe Y 2006 Phys. Rev. B 73 125410

    [34]

    Yang P F, Hu J M, Teng B T, Wu F M, Jiang S Y 2009 Acta Phys. Sin. 58 3331 (in Chinese) [杨培芳、胡娟梅、滕波涛、吴锋民、蒋仕宇 2009 58 3331]

    [35]
    [36]
    [37]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [38]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [39]
    [40]
    [41]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

  • [1]

    Iijima S 1991 Nature 354 56

    [2]
    [3]

    Yagi Y, Briere T M, Sluiter M H F, Kumar V, Farajian A A, Kawazoe Y 2004 Phys. Rev. B 69 075414

    [4]
    [5]

    Durgun E, Dag S, Bagci V M K, Glseren O, Yildirim T, Ciraci1 S 2003 Phys. Rev. B 67 201401

    [6]

    Zhang B X, Yang C, Feng Y F, Yu Y 2009 Acta Phys. Sin. 58 4066 (in Chinese) [张变霞、杨 春、冯玉芳、余 毅 2009 58 4066]

    [7]
    [8]

    Bagci V M K, Glseren O, Yildirim T, Gedik Z, Ciraci S 2002 Phys. Rev. B 66 045409

    [9]
    [10]
    [11]

    Jia G X, Li J J, Zhang Y F 2005 Acta Chim. Sin. 63 97(in Chinese) [贾桂霄、李俊篯、章永凡 2005 化学学报 63 97]

    [12]

    Li J, Zhang K W, Meng L J, Liu W L, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese) [李 俊、张凯旺、孟利军、刘文亮、钟建新 2008 57 382]

    [13]
    [14]

    Planeix J M, Coustel N, Coq B, Brotons V, Kumbhar P S, Dutartre R, Geneste P, Bernier P, Ajayan P M 1994 J. Am. Chem. Soc. 116 7935

    [15]
    [16]
    [17]

    Iyakutti K, Bodapati A, Peng X H, Keblinski P, Nayak S K 2006 Phys. Rev. B 73 035413

    [18]

    Kamal C, Chakrabarti A 2007 Phys. Rev. B 76 075113

    [19]
    [20]

    Zhang N, Zhou D L, Zhou Y 2006 Chin. J. Catal. 27 591(in Chinese) [张 宁、周冬兰、周 瑜 2006 催化学报 27 591]

    [21]
    [22]

    Yuan S J, Kong Y, Wen F S, Li F S 2007 J. Phys.: Condens. Matter 19 466203

    [23]
    [24]

    Zhang G Y, Wang E G 2003 Appl. Phys. Lett. 82 1926

    [25]
    [26]
    [27]

    Won C Y, Joseph S, Aluru N R 2006 J. Chem. Phys. 125 114701

    [28]
    [29]

    Agrawal B K, Singh V, Pathak A, Srivastava R 2007 Phys. Rev. B 75 195421

    [30]

    Yang X B, Ni J 2005 Phys. Rev. B 71 165438

    [31]
    [32]
    [33]

    Chen G, Kawazoe Y 2006 Phys. Rev. B 73 125410

    [34]

    Yang P F, Hu J M, Teng B T, Wu F M, Jiang S Y 2009 Acta Phys. Sin. 58 3331 (in Chinese) [杨培芳、胡娟梅、滕波涛、吴锋民、蒋仕宇 2009 58 3331]

    [35]
    [36]
    [37]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [38]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [39]
    [40]
    [41]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

  • [1] 王天赐, 夏乾善, 黄信佐, 王永正, 刘斌, 张晋通, 黎涛. 单壁碳纳米管/聚醚酰亚胺电磁屏蔽薄膜的制备与性能.  , 2024, 73(17): 178101. doi: 10.7498/aps.73.20240822
    [2] 丁怡, 盛雷梅. 扭转单壁碳纳米管的第一性原理研究.  , 2023, 72(19): 197302. doi: 10.7498/aps.72.20230566
    [3] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究.  , 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [4] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [5] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究.  , 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [6] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究.  , 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [7] 李论雄, 苏江滨, 吴燕, 朱贤方, 王占国. 电子束诱导单壁碳纳米管不稳定的新观察.  , 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [8] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究.  , 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [9] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [10] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究.  , 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [11] 秦威, 张振华, 刘新海. 卷曲效应对单壁碳纳米管电子结构的影响.  , 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [12] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [13] 王亮, 张朝晖. 半导体性单壁碳纳米管与其石墨衬底表面相互作用的第一性原理计算.  , 2009, 58(10): 7147-7150. doi: 10.7498/aps.58.7147
    [14] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [15] 王照亮, 梁金国, 唐大伟, Y. T. Zhu. 单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论.  , 2008, 57(6): 3391-3396. doi: 10.7498/aps.57.3391
    [16] 王昆鹏, 师春生, 赵乃勤, 杜希文. B(N)掺杂单壁碳纳米管的Al原子吸附性能的第一性原理研究.  , 2008, 57(12): 7833-7840. doi: 10.7498/aps.57.7833
    [17] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响.  , 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [18] 马燕萍, 尚学府, 顾智企, 李振华, 王 淼, 徐亚伯. 单壁碳纳米管在场发射显示器中的应用研究.  , 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [19] 陈祥磊, 郗传英, 叶邦角, 翁惠民. 碳纳米管束中的正电子理论.  , 2007, 56(11): 6695-6700. doi: 10.7498/aps.56.6695
    [20] 梁君武, 胡慧芳, 韦建卫, 彭 平. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响.  , 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
计量
  • 文章访问数:  6894
  • PDF下载量:  923
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-11
  • 修回日期:  2011-04-11
  • 刊出日期:  2011-04-05

/

返回文章
返回
Baidu
map