-
The curvature and the helicity of single-wall carbon nanotube (SWCNT) are the important factors which influence the adsorption behaviors of metal atoms inside and outside carbon tubes. However, it is difficult to investigate the separate effects of SWCNT helicity on the adsorption behaviors of metal atoms. In the present work, the armchair (6, 6), zigzag (10, 0), and chiral (8, 4) tubes with similar curvature are selected, then the Rh adsorption behaviors inside and outside the tubes are systematically investigated using the density functional theroy. Due to the different SWCNT helicities, the stable configurations of Rh atoms on tubes are different. The neighbor carbon atoms interacting with Rh atoms vary with tube helicity, therefore, the Rh adsorption energies for a similar configuration are also different. It indicates that the outer charge density of SWCNT is higher than the inner one. Different helicities lead to different charge density variations along the radial direction. Charge density difference shows that the orbital orientations of Rh adatom and the electrons obtained and lost are slightly different due to the different helicities. The bandstructure indicates that the doping band appears near the Fermi energy level. The (6, 6) tube with Rh adatom still exhibits metallicity. When Rh atoms are adsorbed inside the (10, 0) tube, the nanotube transforms from the semiconducting into the metallic one. However, the band gap reduces when Rh atoms adsorbed outside the tube. After the Rh adsorption, the (8, 4) tube band gap reduces.
-
Keywords:
- density functional theory /
- single-wall carbon nanotubes /
- Rh atom /
- helicity
[1] Iijima S 1991 Nature 354 56
[2] [3] Yagi Y, Briere T M, Sluiter M H F, Kumar V, Farajian A A, Kawazoe Y 2004 Phys. Rev. B 69 075414
[4] [5] Durgun E, Dag S, Bagci V M K, Glseren O, Yildirim T, Ciraci1 S 2003 Phys. Rev. B 67 201401
[6] Zhang B X, Yang C, Feng Y F, Yu Y 2009 Acta Phys. Sin. 58 4066 (in Chinese) [张变霞、杨 春、冯玉芳、余 毅 2009 58 4066]
[7] [8] Bagci V M K, Glseren O, Yildirim T, Gedik Z, Ciraci S 2002 Phys. Rev. B 66 045409
[9] [10] [11] Jia G X, Li J J, Zhang Y F 2005 Acta Chim. Sin. 63 97(in Chinese) [贾桂霄、李俊篯、章永凡 2005 化学学报 63 97]
[12] Li J, Zhang K W, Meng L J, Liu W L, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese) [李 俊、张凯旺、孟利军、刘文亮、钟建新 2008 57 382]
[13] [14] Planeix J M, Coustel N, Coq B, Brotons V, Kumbhar P S, Dutartre R, Geneste P, Bernier P, Ajayan P M 1994 J. Am. Chem. Soc. 116 7935
[15] [16] [17] Iyakutti K, Bodapati A, Peng X H, Keblinski P, Nayak S K 2006 Phys. Rev. B 73 035413
[18] Kamal C, Chakrabarti A 2007 Phys. Rev. B 76 075113
[19] [20] Zhang N, Zhou D L, Zhou Y 2006 Chin. J. Catal. 27 591(in Chinese) [张 宁、周冬兰、周 瑜 2006 催化学报 27 591]
[21] [22] Yuan S J, Kong Y, Wen F S, Li F S 2007 J. Phys.: Condens. Matter 19 466203
[23] [24] Zhang G Y, Wang E G 2003 Appl. Phys. Lett. 82 1926
[25] [26] [27] Won C Y, Joseph S, Aluru N R 2006 J. Chem. Phys. 125 114701
[28] [29] Agrawal B K, Singh V, Pathak A, Srivastava R 2007 Phys. Rev. B 75 195421
[30] Yang X B, Ni J 2005 Phys. Rev. B 71 165438
[31] [32] [33] Chen G, Kawazoe Y 2006 Phys. Rev. B 73 125410
[34] Yang P F, Hu J M, Teng B T, Wu F M, Jiang S Y 2009 Acta Phys. Sin. 58 3331 (in Chinese) [杨培芳、胡娟梅、滕波涛、吴锋民、蒋仕宇 2009 58 3331]
[35] [36] [37] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15
[38] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[39] [40] [41] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
-
[1] Iijima S 1991 Nature 354 56
[2] [3] Yagi Y, Briere T M, Sluiter M H F, Kumar V, Farajian A A, Kawazoe Y 2004 Phys. Rev. B 69 075414
[4] [5] Durgun E, Dag S, Bagci V M K, Glseren O, Yildirim T, Ciraci1 S 2003 Phys. Rev. B 67 201401
[6] Zhang B X, Yang C, Feng Y F, Yu Y 2009 Acta Phys. Sin. 58 4066 (in Chinese) [张变霞、杨 春、冯玉芳、余 毅 2009 58 4066]
[7] [8] Bagci V M K, Glseren O, Yildirim T, Gedik Z, Ciraci S 2002 Phys. Rev. B 66 045409
[9] [10] [11] Jia G X, Li J J, Zhang Y F 2005 Acta Chim. Sin. 63 97(in Chinese) [贾桂霄、李俊篯、章永凡 2005 化学学报 63 97]
[12] Li J, Zhang K W, Meng L J, Liu W L, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese) [李 俊、张凯旺、孟利军、刘文亮、钟建新 2008 57 382]
[13] [14] Planeix J M, Coustel N, Coq B, Brotons V, Kumbhar P S, Dutartre R, Geneste P, Bernier P, Ajayan P M 1994 J. Am. Chem. Soc. 116 7935
[15] [16] [17] Iyakutti K, Bodapati A, Peng X H, Keblinski P, Nayak S K 2006 Phys. Rev. B 73 035413
[18] Kamal C, Chakrabarti A 2007 Phys. Rev. B 76 075113
[19] [20] Zhang N, Zhou D L, Zhou Y 2006 Chin. J. Catal. 27 591(in Chinese) [张 宁、周冬兰、周 瑜 2006 催化学报 27 591]
[21] [22] Yuan S J, Kong Y, Wen F S, Li F S 2007 J. Phys.: Condens. Matter 19 466203
[23] [24] Zhang G Y, Wang E G 2003 Appl. Phys. Lett. 82 1926
[25] [26] [27] Won C Y, Joseph S, Aluru N R 2006 J. Chem. Phys. 125 114701
[28] [29] Agrawal B K, Singh V, Pathak A, Srivastava R 2007 Phys. Rev. B 75 195421
[30] Yang X B, Ni J 2005 Phys. Rev. B 71 165438
[31] [32] [33] Chen G, Kawazoe Y 2006 Phys. Rev. B 73 125410
[34] Yang P F, Hu J M, Teng B T, Wu F M, Jiang S Y 2009 Acta Phys. Sin. 58 3331 (in Chinese) [杨培芳、胡娟梅、滕波涛、吴锋民、蒋仕宇 2009 58 3331]
[35] [36] [37] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15
[38] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[39] [40] [41] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
计量
- 文章访问数: 6894
- PDF下载量: 923
- 被引次数: 0