-
大宽高比的非轴对称带状电子注在微波和毫米波真空电子器件中具有显著的技术优势与应用潜力. 采用轴向均匀磁场可以聚焦和传输带状电子注,且具有易于实现电子注与磁场的匹配和调节、聚焦强流电子注以及无传输截止电压限制等优点,但面临严重的Diocotron不稳定性. 结合单粒子模型理论和冷流模型理论,对带状电子注传输特性进行的研究及其数值计算表明,通过详细设计带状注电子光学系统物理参数,增强聚焦磁场并在传输通道高度方向上选择较大的电子注填充比,可以有效降低Diocotron不稳定性对带状电子注的影响,并实现其长距离稳
-
关键词:
- 带状电子注 /
- 传输 /
- 均匀磁场聚焦 /
- Diocotron不稳定性
The investigation on focus and transport characteristics of sheet electron beam has been a key technique for the development of high-power microwave and millimeter-wave vacuum electronic devices. Compared with the period permanent magnetic system to transport the sheet electron beam, the uniform magnetic focusing system has many advantages, such as easily adjusting and matching the magnet with the beam, focusing the intensity electron beam, no cut off beam voltage restriction, etc. However, the Diocotron instability of the sheet electron beam in the uniform magnetic field can produce the distortion, deformation, vortex and oscillation to destroy the beam transportation. In this paper, the single-particle model and the cold-fluid model theory and calculation are used to indicate that if the electron optics system parameters of the sheet beam are designed more carefully, the magnitude of uniform magnetic field and the filling factor of the beam in transport tunnel are increased appropriately, the Diocotron instability can be reduced, even vanished completely to transport the sheet beam effectively in a long distance. To verify the above conclusion, the electron gun with the ellipse cathode and the electron optics system are designed and optimized with the three-dimensinal simulation software in detail. After the complex assembly and weld process with the small geometry and high precision, the W-band sheet electron beam tube is manufactured and tested. The sheet beam cross section of 10 mm0.7 mm is achieved experimentally with the one-dimensional compression and formation of electron gun. Also, with a beam voltage of 2080 kV, and beam current of 0.644.60 A,the experimental transmission rate of sheet beam electron tube manufactured is more than 95% with a drift length of 90 mm, which is higher than the periodic cusp magnetic field transport experiment result of 92% obtained recently.-
Keywords:
- sheet electron beam /
- transport /
- uniform magnetic focusing system /
- Diocotron instability
[1] Booske J H, Brian D M, Thomas M A Jr 1993 J. Appl. Phys. 73 4140
[2] [3] Booske J H, Basten M A, Kumbasar A H, Antonsen T M Jr, Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714
[4] Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313
[5] [6] [7] Zhou J, Bhatt R, Chen C P 2006 Phys. Rev. Spec. Top. Accel. Beams 9 034401
[8] [9] Carlsten B E, Russell S J, Earley L M, Krawczyk F L, Potter J M, Ferguson P, Humphries S Jr 2005 IEEE Trans. Plasma Sci. 33 85
[10] [11] Cusick M, Atkinson J, Balkcum A, Caryotakis G, Gajaria D, Grant T, Meyer C, Lind K, Perrin M, Scheitrum G, Jensen A 2009 IEEE International Vacuum Electronics Conference (Rome: IEEE) p296
[12] Scheitrum G, Caryotakis G, Burke A, Jensen A, Jongewaard E, Neubauer M, Phillips R, Steele R 2006 IEEE International Vacuum Electronics Conference (California: IEEE) p481
[13] [14] [15] Wang S Z, Wang Y, Ding Y G, Ruan C J 2008 IEEE Trans. Plasma Sci. 36 665
[16] Zhao D 2009 Phys. Plasmas 16 113102
[17] [18] Nguyen K T, Pasour J A, Antonsen T M Jr, Larsen P B, Petillo J J, Levush B 2009 IEEEE Trans. Electron Dev. 56 744
[19] -
[1] Booske J H, Brian D M, Thomas M A Jr 1993 J. Appl. Phys. 73 4140
[2] [3] Booske J H, Basten M A, Kumbasar A H, Antonsen T M Jr, Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714
[4] Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313
[5] [6] [7] Zhou J, Bhatt R, Chen C P 2006 Phys. Rev. Spec. Top. Accel. Beams 9 034401
[8] [9] Carlsten B E, Russell S J, Earley L M, Krawczyk F L, Potter J M, Ferguson P, Humphries S Jr 2005 IEEE Trans. Plasma Sci. 33 85
[10] [11] Cusick M, Atkinson J, Balkcum A, Caryotakis G, Gajaria D, Grant T, Meyer C, Lind K, Perrin M, Scheitrum G, Jensen A 2009 IEEE International Vacuum Electronics Conference (Rome: IEEE) p296
[12] Scheitrum G, Caryotakis G, Burke A, Jensen A, Jongewaard E, Neubauer M, Phillips R, Steele R 2006 IEEE International Vacuum Electronics Conference (California: IEEE) p481
[13] [14] [15] Wang S Z, Wang Y, Ding Y G, Ruan C J 2008 IEEE Trans. Plasma Sci. 36 665
[16] Zhao D 2009 Phys. Plasmas 16 113102
[17] [18] Nguyen K T, Pasour J A, Antonsen T M Jr, Larsen P B, Petillo J J, Levush B 2009 IEEEE Trans. Electron Dev. 56 744
[19]
计量
- 文章访问数: 6916
- PDF下载量: 980
- 被引次数: 0