-
Molecular dynamics simulation is applied to investigation of energy exchanges during hydrogen collision with graphite sheet containing a vacancy. The effects of the monovancancy defect on the energy exchanges are discussed in detail. This paper analyzes the energy loss of the incident hydrogen atom, the energy range for the adsorption process, and the energy transfer process for target atom, in the course of a hydrogen atom bombarding the carbon atom at the edge of monovacancy defect in the graphite sheet. The simulation results show that the adsorption process proceeds more easily when the graphite sheet contains a vacancy than when the graphite sheet has perfect crystalline structure. In certain areas of the graphite sheet, adsorption of an incident hydrogen atom can occur in two energy ranges. The sp2 structure as well as overhang configuration occurs when a hydrogen atom is adsorbed. This adsorption process does not reduce the C—C bond energy. It is found that the carbon atom at the edge of monovacancy defect can adsorb an incident hydrogen atom more easily but can not diffuse the gained energy as efficiently as in a perfect graphite sheet. These results are helpful for understanding the chemical erosion of carbon based materials and the ensuing tritium retention in fusion devices.
-
Keywords:
- plasma facing materials /
- molecular dynamics simulation /
- monovacancy
[1] Janeschitz G, Borrass K, Federici G, Igitkhanov Y, Kukushkin M, Pacher H D, Pacher G W, Sugihara M 1995 J. Nucl. Mater. 220 73
[2] Parker R, Janeschitz G, Pacher H D, Post D, Chiocchio S, Federici G, Ladd P,ITER Joint Central Team, Home Teams 1997 J. Nucl. Mater. 241 1
[3] Tivey R, Ando T, Antipenkov A, Barabash V, Chiocchio S, Federici G, Ibbott C, Jakeman R, Janeschitz G, Raffray R, Akiba M, Mazul I, Pacher H, Ulrickson M, Vieider G 1999 Fusion Eng. Des. 46 207
[4] Li Q C, Zheng Y Z, Cheng F Y, Deng X B, Deng D S, You P L, Liu G A, Chen X D 2001 Acta Phys. Sin. 50 507(in Chinese) [李齐良、 郑永真、 程发银、 邓小波、 邓冬生、 游佩林、 刘贵昂、 陈向东 2001 50 507]
[5] Zakharov A P, Gorodetsky A E, Alimov V K, Kanashenko S L, Markin A V 1997 J. Nucl. Mater. 241 52
[6] Atsum H 2003 J. Nucl. Mater. 313 543
[7] Causey R A 2002 J. Nucl. Mater. 300 91
[8] Mech B V, Haasz A A, Davis J W 1998 J. Nucl. Mater. 255 153
[9] Wang Z X, Yu G Q, Ruan M L, Zhu F Y, Zhu D Z, Pan H C, Xu H J 2000 Acta Phys. Sin. 49 1524(in Chinese) [王震遐、 俞国庆、 阮美龄、 朱福英、 朱德彰、 潘浩昌、 徐洪杰 2000 49 1524]
[10] Hu X J, Dai Y B, He Y X, Shen H S, Li R B 2002 Acta Phys. Sin. 51 1388(in Chinese) [胡晓君、 戴永兵、 何贤昶、 沈荷生、 李荣斌 2002 51 1388]
[11] Li R, Hu Y Z, Wang H, Zhang Y J 2006 Acta Phys. Sin. 55 5455(in Chinese) [李 瑞、 胡元中、 王 慧、 张宇军 2006 55 5455]
[12] Ito A, Nakamura H 2008 Commun. Comput. Phys. 4 592
[13] Ito A, Nakamura H 2008 Thin Solid Films 516 6553
[14] Ito A, Wang Y, Irle S, Morokuma K, Nakamura H 2009 J. Nucl. Mater. 390 183
[15] Sun J Z, Li S Y, Stirner T, Chen J L, Wang D Z 2010 J. Appl. Phys. 107 113533
[16] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. cond. Matter 14 783
[17] Biersack J P, Haggmark L G 1980 Nucl. Instrum. Methods 174 257
[18] Biersack J P, Eckstein W 1984 Appl. Phys. A 34 73
[19] Möller W, Eckstein W 1984 Nucl. Instrum. Methods Phys. Res., Sect. B 2 814
[20] Möller W, Eckstein W 1988 Comput. Phys. Commun. 51 355
[21] Lindhard J, Scharff M 1961 Phys. Rev. 124 128
-
[1] Janeschitz G, Borrass K, Federici G, Igitkhanov Y, Kukushkin M, Pacher H D, Pacher G W, Sugihara M 1995 J. Nucl. Mater. 220 73
[2] Parker R, Janeschitz G, Pacher H D, Post D, Chiocchio S, Federici G, Ladd P,ITER Joint Central Team, Home Teams 1997 J. Nucl. Mater. 241 1
[3] Tivey R, Ando T, Antipenkov A, Barabash V, Chiocchio S, Federici G, Ibbott C, Jakeman R, Janeschitz G, Raffray R, Akiba M, Mazul I, Pacher H, Ulrickson M, Vieider G 1999 Fusion Eng. Des. 46 207
[4] Li Q C, Zheng Y Z, Cheng F Y, Deng X B, Deng D S, You P L, Liu G A, Chen X D 2001 Acta Phys. Sin. 50 507(in Chinese) [李齐良、 郑永真、 程发银、 邓小波、 邓冬生、 游佩林、 刘贵昂、 陈向东 2001 50 507]
[5] Zakharov A P, Gorodetsky A E, Alimov V K, Kanashenko S L, Markin A V 1997 J. Nucl. Mater. 241 52
[6] Atsum H 2003 J. Nucl. Mater. 313 543
[7] Causey R A 2002 J. Nucl. Mater. 300 91
[8] Mech B V, Haasz A A, Davis J W 1998 J. Nucl. Mater. 255 153
[9] Wang Z X, Yu G Q, Ruan M L, Zhu F Y, Zhu D Z, Pan H C, Xu H J 2000 Acta Phys. Sin. 49 1524(in Chinese) [王震遐、 俞国庆、 阮美龄、 朱福英、 朱德彰、 潘浩昌、 徐洪杰 2000 49 1524]
[10] Hu X J, Dai Y B, He Y X, Shen H S, Li R B 2002 Acta Phys. Sin. 51 1388(in Chinese) [胡晓君、 戴永兵、 何贤昶、 沈荷生、 李荣斌 2002 51 1388]
[11] Li R, Hu Y Z, Wang H, Zhang Y J 2006 Acta Phys. Sin. 55 5455(in Chinese) [李 瑞、 胡元中、 王 慧、 张宇军 2006 55 5455]
[12] Ito A, Nakamura H 2008 Commun. Comput. Phys. 4 592
[13] Ito A, Nakamura H 2008 Thin Solid Films 516 6553
[14] Ito A, Wang Y, Irle S, Morokuma K, Nakamura H 2009 J. Nucl. Mater. 390 183
[15] Sun J Z, Li S Y, Stirner T, Chen J L, Wang D Z 2010 J. Appl. Phys. 107 113533
[16] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. cond. Matter 14 783
[17] Biersack J P, Haggmark L G 1980 Nucl. Instrum. Methods 174 257
[18] Biersack J P, Eckstein W 1984 Appl. Phys. A 34 73
[19] Möller W, Eckstein W 1984 Nucl. Instrum. Methods Phys. Res., Sect. B 2 814
[20] Möller W, Eckstein W 1988 Comput. Phys. Commun. 51 355
[21] Lindhard J, Scharff M 1961 Phys. Rev. 124 128
计量
- 文章访问数: 8271
- PDF下载量: 625
- 被引次数: 0