搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碰撞阈值下氩原子非次序双电离

张东玲 汤清彬 余本海 陈东

引用本文:
Citation:

碰撞阈值下氩原子非次序双电离

张东玲, 汤清彬, 余本海, 陈东

Nonsequential double ionization of argon atom below the recollision threshold

Zhang Dong-Ling, Tang Qing-Bin, Yu Ben-Hai, Chen Dong
PDF
导出引用
  • 利用三维经典系综模型研究了碰撞阈值下氩原子的非次序双电离.计算结果表明,关联电子末态纵向动量主要分布在二、四象限,且在原点附近几乎没有分布;Ar2+离子末态纵向动量谱在零动量附近呈单峰结构.上述结果与实验结果 定量一致.轨迹分析表明,在碰撞阈值下,氩原子非次序双电离的微观物理机理在不同激光强度下是不相同的.当激光强度I=0.7×1014 W/cm2时,一次碰撞主导重碰撞过程.而当I=0.4×1014
    Nonsequential double ionization (NSDI) of Ar atom below the recollision threshold is investigated using the three-dimensional classical ensembles. The calculated results reveal a dominance of events for electron emission into opposite hemispheres, a clear minimum of the correlated electron-electron momentum distributions at the origin and a single peak structure of the Ar2+ ions longitudinal momentum spectra near zero momentum. The momentum spectra of the Ar2+ ions agree with the experimental results 101 053001 (2008)] quantitatively. Trajectory back analyses show that the microscopic physical mechanisms of Ar NSDI are distinct for different intensities of the laser. When laser intensity equal to 0.7×1014 W/cm2, one recollision dominates the process of the recollision. However,the domination convert to multiple recollisions as the laser intensity decreases to 0.4×1014 W/cm2. In addition, the Coulomb attraction between the ion and electron plays an important role in microscopic dynamics of the electron in the process of Ar NSDI and eventually influences the final-state correlated electron-electron momentum distributions strongly.
    • 基金项目: 国家自然科学基金(批准号:11005088),河南省科技计划项目(批准号: 082300410050,102300410241),河南省高等学校青年骨干教师资助计划项目,河南省教育厅自然科学研究计划项目(批准号: 2009A140006)资助的课题.
    [1]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642

    [2]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [3]

    Schafer K J, Young B, DiMauro L F,Kulander K C 1993 Phys. Rev. Lett. 70 1599

    [4]

    Liao Q, Lu P X, Lan P F, Yang Z Y, Li Y H 2008 Opt. Express 16 6455

    [5]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [6]

    Liao Q, Lu P X, Zhang Q B, Hong W Y, Yang Z Y 2008 J. Phys. B 41 125601

    [7]

    Zhou Y M, Liao Q, Lan P F, Lu P X 2008 Chin. Phys. Lett. 25 3950

    [8]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M , Gong Q H , Yan Z C ,Wang B B 2009 J. Phys. B 42 125601

    [9]

    Paulus G G, Grasbon F, Dreischuh A, Walther H, Kopold R, Becker W 2000 Phys. Rev. Lett. 84 3791

    [10]

    Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408

    [11]

    Lan P F, Lu P X, Cao W, Wang X L 2005 Phys. Rev. E 72 016622

    [12]

    Cao W, Lu P X, Lan P F, Wang X L, Yang G 2007 Opt. Express 15 530

    [13]

    Lan P F, Lu P X, Cao W, 2007 Acta Phys. Sin. 56 2482—2487 (in Chinese) [兰鹏飞、 陆培祥、 曹 伟 2007 56 2482]

    [14]

    Cao W, Lu P X, Lan P F, Wang X L, Yang G, Li Y H 2007 Phys. Rev. A 75 063423

    [15]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 021801

    [16]

    Zhang Q B, Lan P F, Hong W Y, Liao Q, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 4908 (in Chinese) [张庆彬、 兰鹏飞、 洪伟毅、 廖 青、 杨振宇、 陆培祥 2009 58 4908]

    [17]

    Niikura H, Légaré F, Hasbani R, Bandrauk A D, Ivanov M Y, Villeneuve D M, Corkum P B 2002 Nature 417 917

    [18]

    Niikura H, Légaré F, Hasbani R, Bandrauk A D, Ivanov M Y, Villeneuve D M, Corkum P B 2003 Nature 421 826

    [19]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [20]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001

    [21]

    Liao Q, Lu P X, Zhang Q B, Yang Z Y, Wang X B 2008 Opt. Express 16 17070

    [22]

    Liao Q, Lu P X 2009 Opt. Express 17 15550

    [23]

    Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P X 2010 Opt. Express 18 632

    [24]

    Tong A H, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 9064

    [25]

    Weber T, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443

    [26]

    Moshammer R, Feuerstein B, Schmitt W, Dorn A, schröter C D, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Hoffmann K, Sandner W 2000 Phys. Rev. Lett. 84 447

    [27]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dorner R 2000 Nature 405 658

    [28]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [29]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

    [30]

    Liu Y Q, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001

    [31]

    Haan S L, Van Dyke J S, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [32]

    Zhou Y M, Liao Q, Lu P X 2010 Opt. Express 18 16025

    [33]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775(in Chinese) [汤清彬、 张东玲、 余本海、 陈 东 2010 59 7775]

    [34]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001

    [35]

    Kreβ M, Loffler T, Thomson M D, Dorner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, Roskos H 2006 Nature Phys. 2 327

    [36]

    Rudenko A, Jesus V L B, Ergler Th, Zrost K, Feuerstein B, Schröter C D, Moshammer R, Ullrich J 2007 Phys.Rev. Lett. 99 263003

    [37]

    Haan S L, Breen L, Karim A 2007 Opt. Express 15 767

  • [1]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642

    [2]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [3]

    Schafer K J, Young B, DiMauro L F,Kulander K C 1993 Phys. Rev. Lett. 70 1599

    [4]

    Liao Q, Lu P X, Lan P F, Yang Z Y, Li Y H 2008 Opt. Express 16 6455

    [5]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [6]

    Liao Q, Lu P X, Zhang Q B, Hong W Y, Yang Z Y 2008 J. Phys. B 41 125601

    [7]

    Zhou Y M, Liao Q, Lan P F, Lu P X 2008 Chin. Phys. Lett. 25 3950

    [8]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M , Gong Q H , Yan Z C ,Wang B B 2009 J. Phys. B 42 125601

    [9]

    Paulus G G, Grasbon F, Dreischuh A, Walther H, Kopold R, Becker W 2000 Phys. Rev. Lett. 84 3791

    [10]

    Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408

    [11]

    Lan P F, Lu P X, Cao W, Wang X L 2005 Phys. Rev. E 72 016622

    [12]

    Cao W, Lu P X, Lan P F, Wang X L, Yang G 2007 Opt. Express 15 530

    [13]

    Lan P F, Lu P X, Cao W, 2007 Acta Phys. Sin. 56 2482—2487 (in Chinese) [兰鹏飞、 陆培祥、 曹 伟 2007 56 2482]

    [14]

    Cao W, Lu P X, Lan P F, Wang X L, Yang G, Li Y H 2007 Phys. Rev. A 75 063423

    [15]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 021801

    [16]

    Zhang Q B, Lan P F, Hong W Y, Liao Q, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 4908 (in Chinese) [张庆彬、 兰鹏飞、 洪伟毅、 廖 青、 杨振宇、 陆培祥 2009 58 4908]

    [17]

    Niikura H, Légaré F, Hasbani R, Bandrauk A D, Ivanov M Y, Villeneuve D M, Corkum P B 2002 Nature 417 917

    [18]

    Niikura H, Légaré F, Hasbani R, Bandrauk A D, Ivanov M Y, Villeneuve D M, Corkum P B 2003 Nature 421 826

    [19]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [20]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001

    [21]

    Liao Q, Lu P X, Zhang Q B, Yang Z Y, Wang X B 2008 Opt. Express 16 17070

    [22]

    Liao Q, Lu P X 2009 Opt. Express 17 15550

    [23]

    Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P X 2010 Opt. Express 18 632

    [24]

    Tong A H, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 9064

    [25]

    Weber T, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443

    [26]

    Moshammer R, Feuerstein B, Schmitt W, Dorn A, schröter C D, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Hoffmann K, Sandner W 2000 Phys. Rev. Lett. 84 447

    [27]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dorner R 2000 Nature 405 658

    [28]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [29]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

    [30]

    Liu Y Q, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001

    [31]

    Haan S L, Van Dyke J S, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [32]

    Zhou Y M, Liao Q, Lu P X 2010 Opt. Express 18 16025

    [33]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775(in Chinese) [汤清彬、 张东玲、 余本海、 陈 东 2010 59 7775]

    [34]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001

    [35]

    Kreβ M, Loffler T, Thomson M D, Dorner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, Roskos H 2006 Nature Phys. 2 327

    [36]

    Rudenko A, Jesus V L B, Ergler Th, Zrost K, Feuerstein B, Schröter C D, Moshammer R, Ullrich J 2007 Phys.Rev. Lett. 99 263003

    [37]

    Haan S L, Breen L, Karim A 2007 Opt. Express 15 767

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离.  , 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] 贺佟佟, 刘子超, 李盈傧, 黄诚. 平行偏振三色场对原子非次序双电离的调控.  , 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [3] 刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷. 转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态.  , 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [4] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联.  , 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [5] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离.  , 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [6] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖.  , 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [7] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖.  , 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [8] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖.  , 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [9] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究.  , 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响.  , 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [11] 黄诚, 钟明敏, 吴正茂. 低强度周期量级脉冲驱动排列分子的非次序双电离.  , 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [12] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响.  , 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [13] 辛国国, 赵清, 刘杰. 非序列双电离向饱和区过渡的电子最大关联度.  , 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [14] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖.  , 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [15] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离.  , 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [16] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系.  , 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [17] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟.  , 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [18] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算.  , 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [19] 曹士娉, 马新文, A. Dorn, M. Dürr, J. Ullrich. 近阈值下He原子的双电子电离实验中出射电子研究.  , 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [20] 段 斌, 白在桥, 顾 雁. 一维库仑三体系统中电子碰撞导致的(e,2e)电离截面.  , 2000, 49(8): 1428-1434. doi: 10.7498/aps.49.1428
计量
  • 文章访问数:  9322
  • PDF下载量:  699
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-02
  • 修回日期:  2010-08-21
  • 刊出日期:  2011-05-15

/

返回文章
返回
Baidu
map