搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于严格交换势的低能电子与H2分子碰撞振动激发散射截面的研究

李勇军 冯灏 孙卫国 曾阳阳 王小炼 李会东 樊群超

引用本文:
Citation:

基于严格交换势的低能电子与H2分子碰撞振动激发散射截面的研究

李勇军, 冯灏, 孙卫国, 曾阳阳, 王小炼, 李会东, 樊群超

Study on vibrational excitation cross sections of low-energy electrons scattering from H2 molecule including exact exchange

Li Yong-Jun, Feng Hao, Sun Wei-Guo, Zeng Yang-Yang, Wang Xiao-Lian, Li Hui-Dong, Fan Qun-Cao
PDF
导出引用
  • 严格交换势用于研究低能电子与H2分子的弹性和非弹性散射截面,线性代数方法和R-矩阵传播子相结合求解基于振动密耦合方法的积分-微分耦合方程组,由此得到收敛的(0→0,0→1,0→2)散射微分截面和积分截面.理论计算结果与目前优秀的实验值和其他理论计算值进行了比较,表明基于振动密耦合方程的严格交换势在低能电子与H2分子振动激发散射中有重要作用.
    Elastic and inelastic differential and integral cross sections for low-energy vibrational excitation of H2 by electron impact are studied with exact exchange. The resulting coupled integrodifferential equations are solved using a combination of linear-algebraic and R-matrix-propagator techniques. The converged (0→0,0→1,0→2) differential and integral cross sections are obtained. The calculated results are in good agreement with experimental resalts and other calculations, showing that the exact exchange based on equations of vibrational close coupling plays an important role in low-energy electron scattering from H2 molecule.
    • 基金项目: 四川省科技厅应用基础基金(批准号:2009JY0140)资助的课题.
    [1]

    Massey H S 1969 Electronic and Inoic Impact Phenomena, Vo1.II: Electron Collision with Molecules and Photoionization (Oxford University, London)

    [2]

    Capitelli M, Celiberto R, Esposito F, Laricchiuta A, Hassouni K, Longo S 2002 Plasma Sources Sci. Technol. 11 A7-A25

    [3]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges, Materials Processing ed Wiley(New York)

    [4]

    Lane N F 1980 Rev. Mod. Phys. 52 29

    [5]

    White R D, Robson R E, Morrison M A, Li B, Ness K F 2007 J. Phys. Conf. 71 012004

    [6]

    Crompton R W, Morrison M A 1993 Aust. J. Phys. 46 203

    [7]

    Brunger M J, Buckman S J, Newman D S, Alle D T 1991 J. Phys. B 24 1435

    [8]

    Shyn T W, Sharp W E 1981 Phys. Rev. A 24 1734

    [9]

    Jones R K 1985 Phys. Rev. A 31 2898

    [10]

    Ferch J, Raith W, Schröder K 1980 J. Phys. B 13 1481

    [11]

    Subramanian, Kumar V 1989 J. Phys. B 22 2387

    [12]

    Nickel J C, Kanik I, Trajmar S, Imre K 1992 J. Phys. B 25 2427

    [13]

    Schneider B I, Collins L A 1983 Phys. Rev. A 27 2847

    [14]

    Horá Acˇ ek J, í Azˇ ek M, Houfek K, Koloren Acˇ P 2006 Phys. Rev. A 73 022701

    [15]

    Wang B, Feng H, Sun W G, Zeng Y Y, Dai W 2009 Acta Phys. Sin. 58 6932(in Chinese)[王 斌、冯 灏、孙卫国、曾阳阳、戴维 2009 58 6932]

    [16]

    Morrison M A, Saha B C 1986 Phys. Rev. A 34 2796

    [17]

    Sun W G, Morrison M A, Isaacs W A, Trail W K, Alle D T, Gulley R J, Brennan M J, Buckman S J 1995 Phys. Rev. A 52 1229

    [18]

    Morrison M A, Sun W 1995 Computational Methods for Electron-Molecule Collisions ed Huo W, Gianturco F A (New York: Plenum) chapter 6, pp 131—90

    [19]

    Chandra N, Temkin A 1976 Phys. Rev. A 13 188

    [20]

    Morrison M A, Feldt A N, Austin D 1984 Phys. Rev. A 30 2811

    [21]

    Mazon K T, Fujiwara R, Lee M T 2001 Phys. Rev. A 64 042705

    [22]

    Morrison M A, Crompton R W, Saha B C, Petrovic Z L 1987 Aust. J .Phys. 40 239

    [23]

    Zeng Y Y, Feng H, Sun W G, Wang B 2009 Chin. Phys. Lett. 26 023402

    [24]

    Wang X L, Feng H, Sun W G, Fan Q C, Zeng Y Y, Wang B 2010 Acta Phys. Sin. 59 0937(in Chinese)[王小炼、冯 灏、孙卫国、樊群超、曾阳阳、王 斌 2010 59 0937]

    [25]

    Morrison M A, Trail W K 1993 Phys. Rev. A 48 2874

    [26]

    Feng H, Sun W, Morrison M A, Feldt A N 2009 J. Phys. B 42 175201

    [27]

    Zare R N 1988 Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York)

    [28]

    Rose M E 1957 Elementary Theory of Angular Momentum (Wiley, New York)

    [29]

    Edmonds A R 1968 Angular Momentum in Quantum Mechanics (Princeton Univer. Press, Jersey N)

    [30]

    Collins L A, Schneider B I 1981 Phys. Rev. A 24 2387

    [31]

    Schneider B I, Collins L A 1982 J. Phys. B 15 L335

    [32]

    Schneider B I, Collins L A 1983 Phys. Rev. A 27 2847

    [33]

    Schneider B I, Collins L A 1984 Phys. Rev. A 30 95

    [34]

    Schneider B I, Walker R B 1978 J. Chem. Phys. 70 2466

    [35]

    Schneider B I, Taylor H S 1982 J. Chem .Phys. 77 379

    [36]

    Simons G, Parr R G, Finlan M J 1973 J. Chem. Phys. 59 3229

    [37]

    Trail W K, Morrison M A, Isaacs W A, Saha B 1990 Phys. Rev. A 41 4868

    [38]

    Dai W, Feng H, Sun W G, Tang Y J, Shen L, Yu J Z 2008 Acta Phys. Sin. 57 144 (in Chinese)[戴 伟、冯 灏、孙卫国、唐永健、申 立、于江周 2008 57 144]

    [39]

    Linder F, Schmidt H 1971 Z. Naturforsch. 26A 1603

    [40]

    Wong S F, Schulz G J 1974 Phys. Rev. Lett. 32 1089

    [41]

    Yoon J S, Song M Y, Han M J, Hwang S H, Chang W S, Lee B J, Itikawa Y 2008 J. Phys. Chem. Ref. Data 37 913

    [42]

    Ehrhardt H, Langhans L, Linder F, Taylor H S 1968 Phys. Rev. 173 222

    [43]

    England J P, Elford M T, Crompton R W 1988 Aust. J. Phys. 41 573

    [44]

    Buckman S J, Brunger M J 1997 Aust. J. Phys. 50 483

    [45]

    Crompton R W, Morrison M A 1993 Aust. J. Phys. 46 203

    [46]

    Allan M 1985 J. Phys. B 18 L451

  • [1]

    Massey H S 1969 Electronic and Inoic Impact Phenomena, Vo1.II: Electron Collision with Molecules and Photoionization (Oxford University, London)

    [2]

    Capitelli M, Celiberto R, Esposito F, Laricchiuta A, Hassouni K, Longo S 2002 Plasma Sources Sci. Technol. 11 A7-A25

    [3]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges, Materials Processing ed Wiley(New York)

    [4]

    Lane N F 1980 Rev. Mod. Phys. 52 29

    [5]

    White R D, Robson R E, Morrison M A, Li B, Ness K F 2007 J. Phys. Conf. 71 012004

    [6]

    Crompton R W, Morrison M A 1993 Aust. J. Phys. 46 203

    [7]

    Brunger M J, Buckman S J, Newman D S, Alle D T 1991 J. Phys. B 24 1435

    [8]

    Shyn T W, Sharp W E 1981 Phys. Rev. A 24 1734

    [9]

    Jones R K 1985 Phys. Rev. A 31 2898

    [10]

    Ferch J, Raith W, Schröder K 1980 J. Phys. B 13 1481

    [11]

    Subramanian, Kumar V 1989 J. Phys. B 22 2387

    [12]

    Nickel J C, Kanik I, Trajmar S, Imre K 1992 J. Phys. B 25 2427

    [13]

    Schneider B I, Collins L A 1983 Phys. Rev. A 27 2847

    [14]

    Horá Acˇ ek J, í Azˇ ek M, Houfek K, Koloren Acˇ P 2006 Phys. Rev. A 73 022701

    [15]

    Wang B, Feng H, Sun W G, Zeng Y Y, Dai W 2009 Acta Phys. Sin. 58 6932(in Chinese)[王 斌、冯 灏、孙卫国、曾阳阳、戴维 2009 58 6932]

    [16]

    Morrison M A, Saha B C 1986 Phys. Rev. A 34 2796

    [17]

    Sun W G, Morrison M A, Isaacs W A, Trail W K, Alle D T, Gulley R J, Brennan M J, Buckman S J 1995 Phys. Rev. A 52 1229

    [18]

    Morrison M A, Sun W 1995 Computational Methods for Electron-Molecule Collisions ed Huo W, Gianturco F A (New York: Plenum) chapter 6, pp 131—90

    [19]

    Chandra N, Temkin A 1976 Phys. Rev. A 13 188

    [20]

    Morrison M A, Feldt A N, Austin D 1984 Phys. Rev. A 30 2811

    [21]

    Mazon K T, Fujiwara R, Lee M T 2001 Phys. Rev. A 64 042705

    [22]

    Morrison M A, Crompton R W, Saha B C, Petrovic Z L 1987 Aust. J .Phys. 40 239

    [23]

    Zeng Y Y, Feng H, Sun W G, Wang B 2009 Chin. Phys. Lett. 26 023402

    [24]

    Wang X L, Feng H, Sun W G, Fan Q C, Zeng Y Y, Wang B 2010 Acta Phys. Sin. 59 0937(in Chinese)[王小炼、冯 灏、孙卫国、樊群超、曾阳阳、王 斌 2010 59 0937]

    [25]

    Morrison M A, Trail W K 1993 Phys. Rev. A 48 2874

    [26]

    Feng H, Sun W, Morrison M A, Feldt A N 2009 J. Phys. B 42 175201

    [27]

    Zare R N 1988 Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York)

    [28]

    Rose M E 1957 Elementary Theory of Angular Momentum (Wiley, New York)

    [29]

    Edmonds A R 1968 Angular Momentum in Quantum Mechanics (Princeton Univer. Press, Jersey N)

    [30]

    Collins L A, Schneider B I 1981 Phys. Rev. A 24 2387

    [31]

    Schneider B I, Collins L A 1982 J. Phys. B 15 L335

    [32]

    Schneider B I, Collins L A 1983 Phys. Rev. A 27 2847

    [33]

    Schneider B I, Collins L A 1984 Phys. Rev. A 30 95

    [34]

    Schneider B I, Walker R B 1978 J. Chem. Phys. 70 2466

    [35]

    Schneider B I, Taylor H S 1982 J. Chem .Phys. 77 379

    [36]

    Simons G, Parr R G, Finlan M J 1973 J. Chem. Phys. 59 3229

    [37]

    Trail W K, Morrison M A, Isaacs W A, Saha B 1990 Phys. Rev. A 41 4868

    [38]

    Dai W, Feng H, Sun W G, Tang Y J, Shen L, Yu J Z 2008 Acta Phys. Sin. 57 144 (in Chinese)[戴 伟、冯 灏、孙卫国、唐永健、申 立、于江周 2008 57 144]

    [39]

    Linder F, Schmidt H 1971 Z. Naturforsch. 26A 1603

    [40]

    Wong S F, Schulz G J 1974 Phys. Rev. Lett. 32 1089

    [41]

    Yoon J S, Song M Y, Han M J, Hwang S H, Chang W S, Lee B J, Itikawa Y 2008 J. Phys. Chem. Ref. Data 37 913

    [42]

    Ehrhardt H, Langhans L, Linder F, Taylor H S 1968 Phys. Rev. 173 222

    [43]

    England J P, Elford M T, Crompton R W 1988 Aust. J. Phys. 41 573

    [44]

    Buckman S J, Brunger M J 1997 Aust. J. Phys. 50 483

    [45]

    Crompton R W, Morrison M A 1993 Aust. J. Phys. 46 203

    [46]

    Allan M 1985 J. Phys. B 18 L451

  • [1] 李文涛, 袁美玲, 王杰敏. C++H2反应的动力学研究: 基于一个新构建的势能面.  , 2022, 71(9): 093402. doi: 10.7498/aps.71.20212241
    [2] 袁美玲, 李文涛. O++H2 → OH++H反应的动力学研究.  , 2019, 68(8): 083401. doi: 10.7498/aps.68.20182141
    [3] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应.  , 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [4] 张静, 魏巍, 高守宝, 孟庆田. H+Li2: 一个典型的释能反应体系及其含时动力学研究.  , 2015, 64(6): 063101. doi: 10.7498/aps.64.063101
    [5] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应.  , 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [6] 杨欢, 邢玲玲, 张穗萌, 吴兴举, 袁好. 屏蔽效应对氦原子(e,2e)反应中二重微分截面和单微分截面的影响.  , 2013, 62(18): 183402. doi: 10.7498/aps.62.183402
    [7] 令狐荣锋, 徐梅, 吕兵, 宋晓书, 杨向东. He原子与N2分子相互作用势的理论研究.  , 2013, 62(1): 013103. doi: 10.7498/aps.62.013103
    [8] 沈光先, 汪荣凯, 令狐荣锋, 周勋, 杨向东. He-HD (HT, DT) 非对称碰撞体系振转势能面及微分散射截面的理论计算.  , 2012, 61(21): 213101. doi: 10.7498/aps.61.213101
    [9] 刘丽娟, 颉录有, 陈展斌, 蒋军, 董晨钟. 镁原子碰撞激发微分截面和Stokes参数的理论研究.  , 2012, 61(10): 103102. doi: 10.7498/aps.61.103102
    [10] 李劲, 令狐荣锋, 司冠杰, 杨向东. 低能He原子与Li2分子碰撞散射截面理论计算.  , 2010, 59(8): 5424-5428. doi: 10.7498/aps.59.5424
    [11] 王悦, 董德智, 李伟艳, 凤尔银, 崔执凤. He-Na2体系低温下的冷碰撞研究.  , 2009, 58(10): 6913-6919. doi: 10.7498/aps.58.6913
    [12] 汪荣凯, 沈光先, 杨向东. He-BH碰撞体系微分截面的理论计算.  , 2009, 58(8): 5335-5341. doi: 10.7498/aps.58.5335
    [13] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究.  , 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [14] 余春日, 汪荣凯, 张杰, 杨向东. He同位素原子与HBr分子碰撞的微分截面.  , 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [15] 潘 宇, 王凯俊, 方祯云, 汪先友, 彭庆军. 精确计算n-n重正化链图传播下n+n→2π0反应截面.  , 2008, 57(8): 4817-4825. doi: 10.7498/aps.57.4817
    [16] 汪荣凯, 沈光先, 宋晓书, 令狐荣锋, 杨向东. He同位素对He-NO碰撞体系微分截面的影响.  , 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
    [17] 王 平, 李芳昱, 何晓宇. 电磁场中光子-轴子的转化微分截面.  , 2008, 57(9): 5442-5447. doi: 10.7498/aps.57.5442
    [18] 汪荣凯, 令狐荣锋, 杨向东. He-NO碰撞体系微分截面的理论计算.  , 2007, 56(4): 2067-2072. doi: 10.7498/aps.56.2067
    [19] 施德恒, 孙金锋, 朱遵略, 杨向东, 刘玉芳, 马 恒. 中、高能电子被SO2分子散射的微分截面、动量转移截面及弹性积分截面.  , 2007, 56(8): 4435-4440. doi: 10.7498/aps.56.4435
    [20] 施德恒, 孙金锋, 朱遵略, 刘玉芳, 杨向东. 中高能电子被O2及CF4分子散射的微分截面、弹性积分截面及动量转移截面.  , 2005, 54(8): 3548-3553. doi: 10.7498/aps.54.3548
计量
  • 文章访问数:  8685
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-09
  • 修回日期:  2010-05-31
  • 刊出日期:  2011-02-05

/

返回文章
返回
Baidu
map