-
针对光电子器件端面抗反镀膜的要求,研究了基于等离子体增强化学气相沉积(PECVD)技术的多层抗反膜的设计和制作.首先,对影响SiNx折射率的因素进行了实验研究,确定了具有大折射率差的SiO2/SiNx材料的PECVD沉积条件.根据理论计算分析,设计了四层SiO2/SiNx抗反膜结构,能够在70 nm的波长范围内实现低于10-4的反射率
-
关键词:
- 抗反膜 /
- 等离子体增强化学气相沉积 /
- 二氧化硅/氮化硅多层膜
The design and fabrication of multilayer antireflection (AR) coating based on plasma enhanced chemical vapor deposition (PECVD) is studied for its applications in optoelectronic devices. Deposition conditions for obtaining SiO2/SiNx thin films with large refractive index difference is determined through systematic study of factors influencing the refractive index of deposited SiNx. Four-layer SiO2/SiNx AR coating is designed to exhibit a reflectivity of less than 10-4 over 70 nm bandwidth. Reflectivity of the thin film structure at the center wavelength of 1550 nm remains less than 5×10-4 when the thickness deviation of any single layer is within ±5 nm from the designed value. Based on the simulation results, SiO2/SiNx multilayer AR coating is deposited on the end facet of a Fabry-Perot laser. By analyzing the output spectra of the laser, the residual reflectivity of the AR coating is determined to be on the order of 10-4 over the wavelength range of 1535—1565 nm.[1] Mukai T, Yamamoto Y 1981 IEEE J. Quantum. Elect. QE-17 1028
[2] Sun C Z, Xiong B, Wang J, Cai P F, Xu J M, Huang J, Yuan H, Zhou Q W, Luo Y 2008 J. Lightwave Technol. 26 1464
[3] Saitoh T, Mukai T, Mikami O 1985 J. Lightwave Technol. LT-3 288
[4] Eisenstein G 1984 Bell Syst. Tech. J. 63 357
[5] Ji A L, Ma L B, Liu C, Wang Y Q 2004 Acta Phys. Sin. 53 3818 (in Chinese) [纪爱玲、马利波、刘 诚、王永谦 2004 53 3818]
[6] Wang Y Y, Guan X D, Ma J R 1991 Basic Technology of Integrated Circuit (Beijing: Higher Education Press) p253 (in Chinese)[王阳元、关旭东、马俊如 1991 集成电路工艺基础 (北京: 高等教育出版社) 第253页]
[7] Braun D M, Jungerman R L 1995 Opt. Lett. 20 1154
[8] Yu W,Liu L H, Hou H H, Ding X C, Han L, Fu G S 2003 Acta Phys. Sin. 52 687 (in Chinese) [于 威、刘丽辉、侯海虹、丁学成、韩 理、傅广生 2003 52 687]
[9] Wu Q X, Chen G H, Yu Y, Luo Z Z 2007 J. Funct. Mater. 5 703[吴清鑫、陈光红、于 映、罗仲梓 2007 功能材料 5 703]
[10] Lee J, Tanaka T, Sasaki S, Uchiyama S, Tsuchiya M, Kamiya T 1998 J. Lightwave Technol. 16 884
[11] Kaminow I P, Eisenstein G, Stulz L W 1983 IEEE J. Quantum Electron. QE-19 493
-
[1] Mukai T, Yamamoto Y 1981 IEEE J. Quantum. Elect. QE-17 1028
[2] Sun C Z, Xiong B, Wang J, Cai P F, Xu J M, Huang J, Yuan H, Zhou Q W, Luo Y 2008 J. Lightwave Technol. 26 1464
[3] Saitoh T, Mukai T, Mikami O 1985 J. Lightwave Technol. LT-3 288
[4] Eisenstein G 1984 Bell Syst. Tech. J. 63 357
[5] Ji A L, Ma L B, Liu C, Wang Y Q 2004 Acta Phys. Sin. 53 3818 (in Chinese) [纪爱玲、马利波、刘 诚、王永谦 2004 53 3818]
[6] Wang Y Y, Guan X D, Ma J R 1991 Basic Technology of Integrated Circuit (Beijing: Higher Education Press) p253 (in Chinese)[王阳元、关旭东、马俊如 1991 集成电路工艺基础 (北京: 高等教育出版社) 第253页]
[7] Braun D M, Jungerman R L 1995 Opt. Lett. 20 1154
[8] Yu W,Liu L H, Hou H H, Ding X C, Han L, Fu G S 2003 Acta Phys. Sin. 52 687 (in Chinese) [于 威、刘丽辉、侯海虹、丁学成、韩 理、傅广生 2003 52 687]
[9] Wu Q X, Chen G H, Yu Y, Luo Z Z 2007 J. Funct. Mater. 5 703[吴清鑫、陈光红、于 映、罗仲梓 2007 功能材料 5 703]
[10] Lee J, Tanaka T, Sasaki S, Uchiyama S, Tsuchiya M, Kamiya T 1998 J. Lightwave Technol. 16 884
[11] Kaminow I P, Eisenstein G, Stulz L W 1983 IEEE J. Quantum Electron. QE-19 493
计量
- 文章访问数: 8912
- PDF下载量: 748
- 被引次数: 0