搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低维半导体异质结中的量子相干红外发射机理理论研究

孙伟峰 李美成 赵连城

引用本文:
Citation:

低维半导体异质结中的量子相干红外发射机理理论研究

孙伟峰, 李美成, 赵连城

Theoretical investigation of infrared generation mechanism by quantum coherence in low-dimensional semiconductor heterostructures

Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng
PDF
导出引用
  • 给出了一种在非粒子反转条件下量子阱和量子点激光器的红外发射机理. 此种红外发射是基于在同一作用区产生并作为红外场相干源的两种带间跃迁激光场的共振非线性混合. 这种频率下转换机理并不依赖于在半导体激活媒质中的长时相干假定条件,在室温和泵注入电流条件下仍然有效. 频率下转换的固有效率可以达到相当于每个可见光子产生一个红外光子的量子极限值. 根据红外发射的可参变特性,这种非粒子反转的方法尤其适用于长波红外工作范围.
    We present an infrared generation mechanism without population inversion between subbands in quantum well and quantum dot lasers. The infrared generation scheme is based on the resonant nonlinear mixing of the two optical laser fields. These two optical fields come from two interband transitions in the same active region and serve as the coherent drive for infrared field. This mechanism of frequency down conversion should work efficiently at room temperature with injection current pumping, not relying on any ad hoc assumptions of long-lived coherence in the semiconductor active medium. Under optimized waveguide and cavity parameters, the intrinsic down-conversion efficiency can reach the limiting quantum value corresponding to one infrared photon generated by one optical photon. Because the proposed infrared generation is parametric, the proposed scheme without population inversion is especially promising for long-wavelength infrared operation.
    • 基金项目: 国家自然科学基金(批准号:50502014,50972032),国家高技术研究发展计划(批准号:2009AA03Z407)资助的课题.
    [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [2]

    Khan-ngern S, Larkin I A 2000 Phys. Lett. A 266 209

    [3]

    Boucaud P, Sauvage S, Houel J 2008 C. R. Physique 9 840

    [4]

    Singh J 1996 IEEE Photonics Technol. Lett. 8 488

    [5]

    Kisin M V, Stroscio M A, Belenky G, Luryi S 2002 Physica B 316-317 223

    [6]

    Kapon E 1999 Semiconductor Lasers (San Diego: Academic Press)

    [7]

    Li S S, Su Y K 1998 Intersubband Transitions in Quantum Wells: Physics and Devices (Boston: Kluwer)

    [8]

    Sirtori C, Nagle J 2003 C. R. Physique 4 639

    [9]

    Capasso F, Gmachl C, Tredicucci A, Hutchinson A L, Sivco D L, Cho A Y 1999 Opt. Photonics News 10 33

    [10]

    Kono J, Su M Y, Cerne J, Sherwin M S, Allen Jr S J, Inoshita T, Noda T, Sakaki H 1998 Nucl. Instrum. Meth. B 144 115

    [11]

    Harris S E 1989 Phys. Rev. Lett. 62 1033 Scully M O, Zhu S Y, Gavrielides A 1989 Phys. Rev. Lett. 62 2813 Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [12]

    Imamoglu A, Ram R J 1994 Opt. Lett. 19 1744 Schmidt H, Nikonov D E, Campman K L, Maranowski K D, Gossard A C, Imamoglu A 1999 Laser Phys. 9 797

    [13]

    Hao X Y, Li J H, Yang X X 2009 Opt. Commun. 282 3339

    [14]

    Vanier J, Godone A, Levi F 1998 Phys. Rev. A 58 2345

    [15]

    Korsunsky E A, Kosachov D V 2000 J. Opt. Soc. Am. B 17 1405

    [16]

    Johnson N F, Ehrenreich H, Hui P M, Young P M 1990 Phys. Rev. B 41 3655

    [17]

    Heller E R, Fisher K, Szmulowicz F 1995 J. Appl. Phys. 77 5739

    [18]

    Kim S H, Li S S 2003 Physica E 16 199

    [19]

    Hales V J, Poulter A J, Nicholas R J 2000 Physica E 7 84

    [20]

    Joullié A, Christol P 2003 C. R. Physique 4 621

    [21]

    Mowbray D J, Harris L, Fry P W, Ashmore A D, Parnell S R, Finley J J, Skolnick M S, Hopkinson M, Hill G, Clark J 2000 Physica E 7 489

    [22]

    Songmuang R, Kiravittaya S, Sawadsaringkarn M, Panyakeow S, Schmidt O G 2003 J. Cryst. Growth 251 166

    [23]

    Tokuda Y, Tsukada N, Fujiwara K, Nakayama T 1986 Appl. Phys. Lett. 49 1629

    [24]

    Chen T R, Zhuang Y, Xu Y J, Zhao B, Yariv A, Ungar J, Oh S 1992 Appl. Phys. Lett. 60 2954

    [25]

    Chow W W, Koch S W 1999 Semiconductor-Laser Fundamentals (Berlin: Springer)

    [26]

    Joshi A, Xiao M 2006 Prog. Opt. 49 97

    [27]

    Lukin M D, Hemmer P R, Scully M O 2000 Adv. At. Mol. Opt. Phys. 42 347

    [28]

    Hartig M, Ganiere J D, Selbmann P E, Devaud B, Rota L 1999 Phys. Rev. B 60 1500

    [29]

    Jensen B, Palik E D 1985 Handbook of Optical Constants of Solids (Orlando FL: Academic)

    [30]

    Heitz R, Mukhametaznov I, Born H, Grundmann M, Hoffmann A, Madhukar A, Bimberg D 1999 Physica B 272 8

    [31]

    Fedorov A V, Baranov A V, Rukhlenko I D, Masumoto Y 2003 Solid State Communications 128 219

    [32]

    Bogaart E W, Haverkort J E M, Mano T, Ntzel R, Wolter J H 2006 Physica E 32 163

    [33]

    Sirtori C, Kruck P, Barbieri S, Page H, Nagle J, Beck M, Faist J, Oesterle U 1999 Appl. Phys. Lett. 75 3911

  • [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [2]

    Khan-ngern S, Larkin I A 2000 Phys. Lett. A 266 209

    [3]

    Boucaud P, Sauvage S, Houel J 2008 C. R. Physique 9 840

    [4]

    Singh J 1996 IEEE Photonics Technol. Lett. 8 488

    [5]

    Kisin M V, Stroscio M A, Belenky G, Luryi S 2002 Physica B 316-317 223

    [6]

    Kapon E 1999 Semiconductor Lasers (San Diego: Academic Press)

    [7]

    Li S S, Su Y K 1998 Intersubband Transitions in Quantum Wells: Physics and Devices (Boston: Kluwer)

    [8]

    Sirtori C, Nagle J 2003 C. R. Physique 4 639

    [9]

    Capasso F, Gmachl C, Tredicucci A, Hutchinson A L, Sivco D L, Cho A Y 1999 Opt. Photonics News 10 33

    [10]

    Kono J, Su M Y, Cerne J, Sherwin M S, Allen Jr S J, Inoshita T, Noda T, Sakaki H 1998 Nucl. Instrum. Meth. B 144 115

    [11]

    Harris S E 1989 Phys. Rev. Lett. 62 1033 Scully M O, Zhu S Y, Gavrielides A 1989 Phys. Rev. Lett. 62 2813 Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [12]

    Imamoglu A, Ram R J 1994 Opt. Lett. 19 1744 Schmidt H, Nikonov D E, Campman K L, Maranowski K D, Gossard A C, Imamoglu A 1999 Laser Phys. 9 797

    [13]

    Hao X Y, Li J H, Yang X X 2009 Opt. Commun. 282 3339

    [14]

    Vanier J, Godone A, Levi F 1998 Phys. Rev. A 58 2345

    [15]

    Korsunsky E A, Kosachov D V 2000 J. Opt. Soc. Am. B 17 1405

    [16]

    Johnson N F, Ehrenreich H, Hui P M, Young P M 1990 Phys. Rev. B 41 3655

    [17]

    Heller E R, Fisher K, Szmulowicz F 1995 J. Appl. Phys. 77 5739

    [18]

    Kim S H, Li S S 2003 Physica E 16 199

    [19]

    Hales V J, Poulter A J, Nicholas R J 2000 Physica E 7 84

    [20]

    Joullié A, Christol P 2003 C. R. Physique 4 621

    [21]

    Mowbray D J, Harris L, Fry P W, Ashmore A D, Parnell S R, Finley J J, Skolnick M S, Hopkinson M, Hill G, Clark J 2000 Physica E 7 489

    [22]

    Songmuang R, Kiravittaya S, Sawadsaringkarn M, Panyakeow S, Schmidt O G 2003 J. Cryst. Growth 251 166

    [23]

    Tokuda Y, Tsukada N, Fujiwara K, Nakayama T 1986 Appl. Phys. Lett. 49 1629

    [24]

    Chen T R, Zhuang Y, Xu Y J, Zhao B, Yariv A, Ungar J, Oh S 1992 Appl. Phys. Lett. 60 2954

    [25]

    Chow W W, Koch S W 1999 Semiconductor-Laser Fundamentals (Berlin: Springer)

    [26]

    Joshi A, Xiao M 2006 Prog. Opt. 49 97

    [27]

    Lukin M D, Hemmer P R, Scully M O 2000 Adv. At. Mol. Opt. Phys. 42 347

    [28]

    Hartig M, Ganiere J D, Selbmann P E, Devaud B, Rota L 1999 Phys. Rev. B 60 1500

    [29]

    Jensen B, Palik E D 1985 Handbook of Optical Constants of Solids (Orlando FL: Academic)

    [30]

    Heitz R, Mukhametaznov I, Born H, Grundmann M, Hoffmann A, Madhukar A, Bimberg D 1999 Physica B 272 8

    [31]

    Fedorov A V, Baranov A V, Rukhlenko I D, Masumoto Y 2003 Solid State Communications 128 219

    [32]

    Bogaart E W, Haverkort J E M, Mano T, Ntzel R, Wolter J H 2006 Physica E 32 163

    [33]

    Sirtori C, Kruck P, Barbieri S, Page H, Nagle J, Beck M, Faist J, Oesterle U 1999 Appl. Phys. Lett. 75 3911

  • [1] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息.  , 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [2] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干.  , 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [3] 刘锋, 高冬梅, 蔡晓秋. 多体系统中相干资源的一般化理论.  , 2019, 68(23): 230301. doi: 10.7498/aps.68.20190966
    [4] 李保民, 胡明亮, 范桁. 量子相干.  , 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [5] 翁羽翔, 王专, 陈海龙, 冷轩, 朱锐丹. 量子相干态的二维电子光谱测量的原理、应用和发展.  , 2018, 67(12): 127801. doi: 10.7498/aps.67.20180783
    [6] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体中V型三能级原子的自发辐射.  , 2017, 66(1): 014202. doi: 10.7498/aps.66.014202
    [7] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转.  , 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [8] 杨军, 章曦, 苗仁德. 自旋场效应晶体管中隧道磁阻的势垒相关反转效应.  , 2014, 63(21): 217202. doi: 10.7498/aps.63.217202
    [9] 曾宽宏, 王登龙, 佘彦超, 张蔚曦. 计及激子-双激子相干下半导体单量子点中的空间光孤子对.  , 2013, 62(14): 147801. doi: 10.7498/aps.62.147801
    [10] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明.  , 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [11] 于文健, 王继锁, 梁宝龙. 非线性相干态光场与二能级原子相互作用的量子特性.  , 2012, 61(6): 060301. doi: 10.7498/aps.61.060301
    [12] 安颖, 杜振辉, 刘景旺, 徐可欣. 激光自外差相干测量中分布反馈半导体激光器电流调谐非线性的补偿方法.  , 2012, 61(3): 034207. doi: 10.7498/aps.61.034207
    [13] 杨 军, 武文远, 龚艳春. 磁性隧道结中的量子相干输运研究.  , 2008, 57(1): 448-452. doi: 10.7498/aps.57.448
    [14] 李耀义, 程木田, 周慧君, 刘绍鼎, 王取泉, 薛其坤. 脉冲激发三能级体系半导体量子点的单光子发射效率.  , 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [15] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究.  , 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [16] 俞 莹, 吕树臣, 周百斌, 辛显双. 纳米晶ZrO2:Er3+-Yb3+的制备及其室温上转换发射.  , 2006, 55(8): 4332-4336. doi: 10.7498/aps.55.4332
    [17] 胡振华, 黄德修. 非对称耦合量子阱吸收与色散的理论研究.  , 2005, 54(4): 1788-1793. doi: 10.7498/aps.54.1788
    [18] 韩 鹏, 金奎娟, 周岳亮, 周庆莉, 王 旭, 赵嵩卿, 马中水. GaAs/Ga1-xAlxAs半导体量子阱光辐射-热离子制冷.  , 2005, 54(9): 4345-4349. doi: 10.7498/aps.54.4345
    [19] 王继锁, 冯健, 刘堂昆, 詹明生. 一种新的奇偶非线性相干态及其量子统计性质.  , 2002, 51(11): 2509-2513. doi: 10.7498/aps.51.2509
    [20] 罗诗裕, 刘曾荣, 邵明珠. 半导体光磁电效应的非线性特征.  , 1987, 36(5): 547-554. doi: 10.7498/aps.36.547
计量
  • 文章访问数:  8643
  • PDF下载量:  790
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-18
  • 修回日期:  2009-12-07
  • 刊出日期:  2010-09-15

/

返回文章
返回
Baidu
map