-
通过实验及仿真研究了基于C环的新型八边形开口谐振环金属线复合周期结构左手材料.以金属铜八边形谐振环(SRRs)为基本单元的周期结构负磁导率材料,与闭口环(CSRRs)结果对比发现八边形谐振环能产生很好的谐振效果即能产生负磁导率;复合结构仿真结果显示,八边形谐振环金属线复合结构实现负折射具有可行性.设计、制作并实验和仿真研究了两种尺寸的八边形谐振环金属线复合周期结构左手材料,实验结果显示,分别在9.8—15 GHz和9.5—15 GHz出现良好负折射效应,表明小尺寸材料负折射频段较宽但整体能量透过率较小.通过与尺寸相近的传统C环样品实验对比发现八边形样品损耗较大,但其负折射区域能量分布比例较大,具有一定的优越性.该研究对新型周期结构左手材料的研究、设计和研制具有重要的科学意义,在国防、通信等领域也具有广阔的应用前景.Traditional C-shaped split resonant ring(SRR) composite metal wire periodic structure is studied through simulation and experiment. Comparing the simulation result of negative permeability material based on periodic structure of octagonal SRR with that of closed split resonant rings (CSRRs), we ind that octagonal SRRs can produce negative permeability. A new kind of left-handed material combined with octagonal resonators and copper wires is de signed, and the simulation result shows that the structure has good left-hand property in a certain frequency band. Experimental samples of two different sizes are fabricated, in which negative refraction happens in ranges of 9.8—15 GHz and 9.5—15 GHz separately: small size sample has more broad negative band but lower transmission rate.By comparison with the experiment result of C-shaped sample we ind that the octagonal SRR hasa high transmission rate , but energy transmitting through new designed structure shows a more proportion in negative field, which demonstrates better negative behavior. This has important significance on design and study on new periodic structures of left-handed materials.
-
Keywords:
- composite structure /
- negative refraction /
- octagonal resonator
[1] Veselago VG. 1968 Soviet Phys. USPEKHI 10 509
[2] Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773
[3] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE 47 2075
[4] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[5] Shelby R , Smith D R, Nemat-Nasser S C, Schultz S 2001 Appl. Phys. Lett. 78 489
[6] Shelby R A, Smith D R, Schulz S 2001 Science 292 77
[7] Huangfu J, Ran L, Chen H 2004 Appl Phys Lett.. 84 1537
[8] Ye J Y, Zhang C M, Zhao B C 2008 Acta Phys. Sin. 57 67 (in Chinese) [叶健勇、张淳民、赵葆常 2008 57 67]
[9] Peng Z H , Zhang C M, Zhao B C, Li Y C, Wu F Q 2006 Acta. Phys. Sin. 55 6374 (in Chinese) [彭志红、张淳民、赵葆常、李英才、吴福全 2006 55 6374]
[10] Yuan Z L , Zhang C M, Zhao B C 2007 Acta. Phys. Sin. 56 6413(in Chinese) [袁志林、张淳民、赵葆常2007 56 6413]
[11] Jian X H , Zhang C M, Zhao B C 2007 Acta. Phys. Sin. 56 824 (inChinese) [简小华、张淳民、赵葆常2007 56 824]
[12] Zhang C M, He J 2006 Opt. Express 14 12561
[13] Zhang C M, Zhao B C , Xiang L B 2006 Optik 117 265
[14] Zhang C M, Zhao B C , Xiang L B 2004 Appl. Opt. 43 6090
[15] Zhang CM, XiangL B , Zhao B C 2004 J. Opt. A: Pure Appl. Opt. 68 15
[16] Zhang C M, Zhao B C , Xiang L B 2003 Opt. Commun. 227 221
[17] Zhang C M, Zhao B C , Xiang L B 2002 Opt. Commun. 203 21
[18] Zhang C M,, Yan X G , Zhao B C, 2008 Opt. Commun. 281 2050
[19] Zhang C M, Xiang L B, Zhao B C 2000 Proc. SPIE 4087 957
[20] Zhang C M, Zhao B C, Yuan Y, He J 2006 Proc. SPIE 6032 T320
[21] Zhang C M, Zhao B C, Xiang L B, Li Y C , Peng Z H 2006 Proc.SPIE 6150 15001
[22] Zhang C M, Zhao B C, Li Y C, Ye J Y 2007 Proc. SPIE 6279 D2791
[23] Zhang C M, Yuan Z L, Sun M Z, Wu J F, Gao P 2009 Appl. Opt. 49 281
[24] Zhang C Z, Zhao B C, Yuan Z L, Huang W J 2009 J. Opt. A: Pure Appl. Opt. 11 085401
[25] Aydin K, Guven K 2004 Opt. Lett.29 2623
[26] Zhang C M, Ming Z S, Yuan Z L, Song X P 2009 Acta. Phy. Sin. 58 1758 (in Chinese)[张淳民、孙明昭、袁志林、宋晓平 2009 58 1758 ]
[27] Ming Z S, Zhang CM, Song X P, Liang G Y, Sun Z P 2009 Acta. Phy. Sin. 58 6179 (in Chinese) [孙明昭、张淳民、宋晓平、梁工英、孙占波 2009 58 6179 ]
-
[1] Veselago VG. 1968 Soviet Phys. USPEKHI 10 509
[2] Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773
[3] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE 47 2075
[4] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[5] Shelby R , Smith D R, Nemat-Nasser S C, Schultz S 2001 Appl. Phys. Lett. 78 489
[6] Shelby R A, Smith D R, Schulz S 2001 Science 292 77
[7] Huangfu J, Ran L, Chen H 2004 Appl Phys Lett.. 84 1537
[8] Ye J Y, Zhang C M, Zhao B C 2008 Acta Phys. Sin. 57 67 (in Chinese) [叶健勇、张淳民、赵葆常 2008 57 67]
[9] Peng Z H , Zhang C M, Zhao B C, Li Y C, Wu F Q 2006 Acta. Phys. Sin. 55 6374 (in Chinese) [彭志红、张淳民、赵葆常、李英才、吴福全 2006 55 6374]
[10] Yuan Z L , Zhang C M, Zhao B C 2007 Acta. Phys. Sin. 56 6413(in Chinese) [袁志林、张淳民、赵葆常2007 56 6413]
[11] Jian X H , Zhang C M, Zhao B C 2007 Acta. Phys. Sin. 56 824 (inChinese) [简小华、张淳民、赵葆常2007 56 824]
[12] Zhang C M, He J 2006 Opt. Express 14 12561
[13] Zhang C M, Zhao B C , Xiang L B 2006 Optik 117 265
[14] Zhang C M, Zhao B C , Xiang L B 2004 Appl. Opt. 43 6090
[15] Zhang CM, XiangL B , Zhao B C 2004 J. Opt. A: Pure Appl. Opt. 68 15
[16] Zhang C M, Zhao B C , Xiang L B 2003 Opt. Commun. 227 221
[17] Zhang C M, Zhao B C , Xiang L B 2002 Opt. Commun. 203 21
[18] Zhang C M,, Yan X G , Zhao B C, 2008 Opt. Commun. 281 2050
[19] Zhang C M, Xiang L B, Zhao B C 2000 Proc. SPIE 4087 957
[20] Zhang C M, Zhao B C, Yuan Y, He J 2006 Proc. SPIE 6032 T320
[21] Zhang C M, Zhao B C, Xiang L B, Li Y C , Peng Z H 2006 Proc.SPIE 6150 15001
[22] Zhang C M, Zhao B C, Li Y C, Ye J Y 2007 Proc. SPIE 6279 D2791
[23] Zhang C M, Yuan Z L, Sun M Z, Wu J F, Gao P 2009 Appl. Opt. 49 281
[24] Zhang C Z, Zhao B C, Yuan Z L, Huang W J 2009 J. Opt. A: Pure Appl. Opt. 11 085401
[25] Aydin K, Guven K 2004 Opt. Lett.29 2623
[26] Zhang C M, Ming Z S, Yuan Z L, Song X P 2009 Acta. Phy. Sin. 58 1758 (in Chinese)[张淳民、孙明昭、袁志林、宋晓平 2009 58 1758 ]
[27] Ming Z S, Zhang CM, Song X P, Liang G Y, Sun Z P 2009 Acta. Phy. Sin. 58 6179 (in Chinese) [孙明昭、张淳民、宋晓平、梁工英、孙占波 2009 58 6179 ]
计量
- 文章访问数: 8523
- PDF下载量: 1705
- 被引次数: 0