搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹场辅助的单量子阱自旋共振输运

张存喜 王瑞 孔令民

引用本文:
Citation:

太赫兹场辅助的单量子阱自旋共振输运

张存喜, 王瑞, 孔令民

Photon-mediated electron transport through a quantum well in an intense terahertz field with spin-orbit coupling

Zhang Cun-Xi, Wang Rui, Kong Ling-Min
PDF
导出引用
  • 在考虑自旋轨道耦合的情况下,研究了通过一非磁性半导体异质结的太赫兹光子驱动的电子输运,研究结果显示频率相关的电导谱出现不对称的Fano型共振的劈裂;随着振荡场幅度的增加,多光子辅助过程出现;通过改变外加场参数,可以实现自旋过滤目的,特别是在干涉相消Fano型共振的频率位置时,出现了100%纯的自旋极化流.这些属性有助于大范围可调的自旋过滤器的实现并且可以得到纯的自旋透射流.
    We investigate theoretically the intense terahertz field-driven electron-transport through a nonmagnetic semiconductor-heterostructure with spin-orbit coupling. It is found that the frequency-dependent conductivity spectra possess splitting resonance-peaks of asymmetric Fano-type, and multiple-photon-process arises with the increasing amplitude of oscillating field. By changing the external field parameters, the purpose of spin filtering may be realized, and 100% pure spin-polarized current at the frequency of Fano-resonance can also be achieved. These interesting features may be a very useful basis for devising a wide range tunable spin filter and realizing pure spin current.
    • 基金项目: 国家自然科学基金(批准号:10947163, 10947164)、浙江省教育厅科研计划(批准号:Y200804735)和浙江海洋学院基金(批准号:11062100509,21065012108)资助的课题.
    [1]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [2]

    Hall K C, Lau W H, Gundogdu K, Flatte M E, Boggess T F 2003 Appl. Phys. Lett. 83 2937

    [3]

    Smorchkova I P, Samarth N 1997 Phys. Rev. Lett. 78 3571

    [4]

    Li Z J 2005 Chin. Phys. 14 2100

    [5]

    Wang J M, Wang R, Zhang Y P, Liang J Q 2007 Chin. Phys. 16 2069

    [6]

    Wang J M, Wang R, Liang J Q 2007 Chin. Phys. 16 2075

    [7]

    Bena C, Balents L 2002 Phys. Rev. B 65 11510

    [8]

    McGuire J P, Ciuti C, Sham L J 2004 Phys. Rev. B 69 115339

    [9]

    Morten J P, Brataas A, Belzig W 2004 Phys. Rev. B 70 212508

    [10]

    Urazhdin S, Loloee R, Pratt W P 2005 Phys. Rev. B 71 100401

    [11]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834

    [12]

    Zhang S 2000 Phys. Rev. Lett. 85 393

    [13]

    Murakami S, Nagaosa N, Zhang S 2003 Science 301 1348

    [14]

    Bernevig B A, Zhang S C 2005 Phys. Rev. Lett. 95 016801

    [15]

    Guo G Y, Yao Y G, Niu Q 2005 Phys. Rev. Lett. 94 226601

    [16]

    Perel V I, Tarasenko S A, Yassievich I N, Ganichev S D, Belkov V V, Prettl W 2003 Phys. Rev. B 67 201304(R)

    [17]

    Glazov M M, Alekseev P S, Odnoblyudov M A, Chistyakov V M, Tarasenko S A, Yassievich I N 2005 Phys. Rev. B 71 155313

    [18]

    Voskoboynikov A, Liu S S, Lee C P, Tretyak O 2000 J. Appl. Phys. 87 387

    [19]

    Shang C E, Guo Y, Chen X Y 2004 J. Appl. Phys. 96 3339

    [20]

    Hall K C, Lau W H, Güdogdu K, Flatté M E, Boggess T F 2003 Appl. Phys. Lett. 83 2937

    [21]

    Koga T, Nitta J, Takayanagi H, Datta S 2002 Phys. Rev. Lett. 88 126601

    [22]

    Ting D Z Y, Cartoixa X 2002 Appl. Phys. Lett. 81 4198

    [23]

    Guimars P S S, Brian J K, Allen S J, Hopkins P F, Gossard A C, Florez L T, Harbison J P 1993 Phys. Rev. Lett. 70 3792

    [24]

    Drexler H, Scott J S, Allen S J, Campman K L, Gossard A C 1995 Appl. Phys. Lett. 67 2816

    [25]

    Fano U 1961 Phys. Rev. 124 1866

    [26]

    Fano U, Cooper J W 1965 Phys. Rev. A 137 1364

    [27]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [28]

    Shirley J H 1965 Phys. Rev. 138 B979

    [29]

    Holthaus M, Hone D 1993 Phys. Rev. B 47 6499

    [30]

    Fromherz T 1997 Phys. Rev. B 56 4772

    [31]

    Zhang C X, Nie Y H, Liang J Q 2008 Chin. Phys. B 17 2670

    [32]

    Li W, Reichl L E 1999 Phys. Rev. B 60 15732

    [33]

    Bagwell P F, Lake R K 1992 Phys. Rev. B 46 15329

    [34]

    Landauer R 1989 J. Phys. Condens. Matter 1 8099

    [35]

    Buttiker M 1986 Phys. Rev. Lett. 57 1761

    [36]

    Christen T, Buttiker M 1996 Phys. Rev. Lett. 77 143

    [37]

    Berman G P, Bulgakov E N, Campbell D K, Sadreev A F 1996 Physica B 225 1

    [38]

    Bulgakov E N, Sadreev A F 1996 J. Phys.: Condens. Matter 8 8869

  • [1]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [2]

    Hall K C, Lau W H, Gundogdu K, Flatte M E, Boggess T F 2003 Appl. Phys. Lett. 83 2937

    [3]

    Smorchkova I P, Samarth N 1997 Phys. Rev. Lett. 78 3571

    [4]

    Li Z J 2005 Chin. Phys. 14 2100

    [5]

    Wang J M, Wang R, Zhang Y P, Liang J Q 2007 Chin. Phys. 16 2069

    [6]

    Wang J M, Wang R, Liang J Q 2007 Chin. Phys. 16 2075

    [7]

    Bena C, Balents L 2002 Phys. Rev. B 65 11510

    [8]

    McGuire J P, Ciuti C, Sham L J 2004 Phys. Rev. B 69 115339

    [9]

    Morten J P, Brataas A, Belzig W 2004 Phys. Rev. B 70 212508

    [10]

    Urazhdin S, Loloee R, Pratt W P 2005 Phys. Rev. B 71 100401

    [11]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834

    [12]

    Zhang S 2000 Phys. Rev. Lett. 85 393

    [13]

    Murakami S, Nagaosa N, Zhang S 2003 Science 301 1348

    [14]

    Bernevig B A, Zhang S C 2005 Phys. Rev. Lett. 95 016801

    [15]

    Guo G Y, Yao Y G, Niu Q 2005 Phys. Rev. Lett. 94 226601

    [16]

    Perel V I, Tarasenko S A, Yassievich I N, Ganichev S D, Belkov V V, Prettl W 2003 Phys. Rev. B 67 201304(R)

    [17]

    Glazov M M, Alekseev P S, Odnoblyudov M A, Chistyakov V M, Tarasenko S A, Yassievich I N 2005 Phys. Rev. B 71 155313

    [18]

    Voskoboynikov A, Liu S S, Lee C P, Tretyak O 2000 J. Appl. Phys. 87 387

    [19]

    Shang C E, Guo Y, Chen X Y 2004 J. Appl. Phys. 96 3339

    [20]

    Hall K C, Lau W H, Güdogdu K, Flatté M E, Boggess T F 2003 Appl. Phys. Lett. 83 2937

    [21]

    Koga T, Nitta J, Takayanagi H, Datta S 2002 Phys. Rev. Lett. 88 126601

    [22]

    Ting D Z Y, Cartoixa X 2002 Appl. Phys. Lett. 81 4198

    [23]

    Guimars P S S, Brian J K, Allen S J, Hopkins P F, Gossard A C, Florez L T, Harbison J P 1993 Phys. Rev. Lett. 70 3792

    [24]

    Drexler H, Scott J S, Allen S J, Campman K L, Gossard A C 1995 Appl. Phys. Lett. 67 2816

    [25]

    Fano U 1961 Phys. Rev. 124 1866

    [26]

    Fano U, Cooper J W 1965 Phys. Rev. A 137 1364

    [27]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [28]

    Shirley J H 1965 Phys. Rev. 138 B979

    [29]

    Holthaus M, Hone D 1993 Phys. Rev. B 47 6499

    [30]

    Fromherz T 1997 Phys. Rev. B 56 4772

    [31]

    Zhang C X, Nie Y H, Liang J Q 2008 Chin. Phys. B 17 2670

    [32]

    Li W, Reichl L E 1999 Phys. Rev. B 60 15732

    [33]

    Bagwell P F, Lake R K 1992 Phys. Rev. B 46 15329

    [34]

    Landauer R 1989 J. Phys. Condens. Matter 1 8099

    [35]

    Buttiker M 1986 Phys. Rev. Lett. 57 1761

    [36]

    Christen T, Buttiker M 1996 Phys. Rev. Lett. 77 143

    [37]

    Berman G P, Bulgakov E N, Campbell D K, Sadreev A F 1996 Physica B 225 1

    [38]

    Bulgakov E N, Sadreev A F 1996 J. Phys.: Condens. Matter 8 8869

  • [1] 陈召, 马昕新, 李童, 王艺霖. 耦合谐振系统中基于Fano共振的光学压力传感器.  , 2024, 73(8): 084205. doi: 10.7498/aps.73.20232025
    [2] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干.  , 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [3] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振.  , 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [4] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [5] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性.  , 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [6] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究.  , 2021, (): . doi: 10.7498/aps.70.20210855
    [7] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展.  , 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [8] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展.  , 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [9] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应.  , 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [10] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体.  , 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [11] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究.  , 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [12] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究.  , 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [13] 陈颖, 曹景刚, 谢进朝, 高新贝, 许扬眉, 李少华. 含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性.  , 2019, 68(10): 107302. doi: 10.7498/aps.68.20181985
    [14] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变.  , 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [15] 谢勇, 刘若男. 过阻尼搓板势系统的随机共振.  , 2017, 66(12): 120501. doi: 10.7498/aps.66.120501
    [16] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [17] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [18] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展.  , 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [19] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响.  , 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [20] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响.  , 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
计量
  • 文章访问数:  8181
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-27
  • 修回日期:  2009-11-16
  • 刊出日期:  2010-07-15

/

返回文章
返回
Baidu
map