搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于树枝结构单元的超材料宽带微波吸收器

保石 罗春荣 张燕萍 赵晓鹏

引用本文:
Citation:

基于树枝结构单元的超材料宽带微波吸收器

保石, 罗春荣, 张燕萍, 赵晓鹏

Broadband metamaterial absorber based on dendritic structure

Bao Shi, Luo Chun-Rong, Zhang Yan-Ping, Zhao Xiao-Peng
PDF
导出引用
  • 本文设计并制作了一种基于树枝结构单元的超材料宽带微波吸收器.该超材料吸收器采用夹层结构,由按六边形密集排布的金属树枝阵列、双层介质基板和金属薄膜组成.通过调节树枝单元的几何参数和金属树枝阵列的排布方式,可以出现三个吸收峰,实现三频工作.通过调节三个吸收峰工作的频率形成宽频吸收,采用夹层结构提高吸收效率,从而对垂直入射到超材料表面的微波实现高吸收.实验表明吸收器的反射曲线从9.79 GHz到11.72 GHz出现了反射率小于10%的较宽吸收带,透射曲线恒等于0,吸收率大于90%的带宽为1.93 GHz.这种
    We present a metamaterial absorber (MA) composed of double layers of metal dendritic cells,dielectric substrate and metal film.With three different sizes of dendritic cells arranging in hexagonal array,it is able to find three discrete absorption peaks.Our experiments confirm that,if the frequencies of the three absorption peaks go closer,a combined broadband absorption peak could be achieved.Compared with the metamaterial absorber with only one singer layer of metal dendritic cells,the double-layered metal dendritic cells adopted in our MA greatly improve the absorption efficiency.The experimental result shows an absorption band of 1.93 GHz width with the absorptivity higher than 90% in the frequency range between 9.79 and 11.72 GHz.The proposed MA has a series of advantages such as high absorptivity,simple structure,small thickness,2D isotropy and wide absorption band.
    • 基金项目: 国家自然科学基金(批准号:50632030,50872113),国家重点基础研究发展计划(批准号:2004CB719805)和国防基础科研项目资助的课题.
    [1]

    [1]Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [2]

    [2]Smith D R, Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [3]

    [3]Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [4]

    [4]Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    [5]Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [6]

    [6]Zhao Q, Zhao X P, Kang L, Zhang F L, Liu Y H, Luo C R 2004 Acta Phys. Sin. 53 2206 (in Chinese) [赵乾、赵晓鹏、康雷、张富利、刘亚红、罗春荣 2004 53 2206]

    [7]

    [7]Zhang F L, Zhao Q, Liu Y H, Luo C R, Zhao X P 2004 Chin. Phys. Lett. 21 1330

    [8]

    [8]Zhao X P, Zhao Q, Kang L, Song J, Fu Q H 2005 Phys. Lett. A 346 87

    [9]

    [9]Luo C R, Kang L, Zhao Q, Fu Q H, Song J, Zhao X P 2005 Acta Phys. Sin. 54 1607 (in Chinese) [罗春荣、康雷、赵乾、付全红、宋娟、赵晓鹏 2005 54 1607]

    [10]

    ]Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express. 14 7188

    [11]

    ]Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 241116

    [12]

    ]Zhou X, Zhao X P 2007 Appl. Phys. Lett. 91 181908

    [13]

    ]Guo J Q, Luo C R, Zhao X P 2009 Chin. Phys. Lett. 26 044102

    [14]

    ]Luo C R, Wang S H, Guo J Q, Huang Y, Zhao X P 2009 Acta Phys. Sin. 58 3124 (in Chinese) [罗春荣、王连胜、郭继权、黄勇、赵晓鹏 2009 58 3124]

    [15]

    ]Liu H, Zhao X P, Yang Y, Li Q W, Lv J 2008 Adv. Mater. 20 2050

    [16]

    ]Liu B Q, Zhao X P, Zhu W R, Luo W, Cheng X C 2008 Adv. Funct. Mater. 18 3523

    [17]

    ]Christopher M B, Tao H, Liu X L, Richard D A, Zhang X, Padilla W J 2008 Opt. Express. 16 18565

    [18]

    ]Munk B A, Pryor J B, Gan Y B 2004 Electromagnetic Materials Proc. of the Symposium F 2003 (Singapore:World Scientific Publishing Company) p977

    [19]

    ]Zhou J, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101

    [20]

    ]Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. B 75 235114

    [21]

    ]Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

  • [1]

    [1]Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [2]

    [2]Smith D R, Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [3]

    [3]Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [4]

    [4]Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    [5]Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [6]

    [6]Zhao Q, Zhao X P, Kang L, Zhang F L, Liu Y H, Luo C R 2004 Acta Phys. Sin. 53 2206 (in Chinese) [赵乾、赵晓鹏、康雷、张富利、刘亚红、罗春荣 2004 53 2206]

    [7]

    [7]Zhang F L, Zhao Q, Liu Y H, Luo C R, Zhao X P 2004 Chin. Phys. Lett. 21 1330

    [8]

    [8]Zhao X P, Zhao Q, Kang L, Song J, Fu Q H 2005 Phys. Lett. A 346 87

    [9]

    [9]Luo C R, Kang L, Zhao Q, Fu Q H, Song J, Zhao X P 2005 Acta Phys. Sin. 54 1607 (in Chinese) [罗春荣、康雷、赵乾、付全红、宋娟、赵晓鹏 2005 54 1607]

    [10]

    ]Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express. 14 7188

    [11]

    ]Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 241116

    [12]

    ]Zhou X, Zhao X P 2007 Appl. Phys. Lett. 91 181908

    [13]

    ]Guo J Q, Luo C R, Zhao X P 2009 Chin. Phys. Lett. 26 044102

    [14]

    ]Luo C R, Wang S H, Guo J Q, Huang Y, Zhao X P 2009 Acta Phys. Sin. 58 3124 (in Chinese) [罗春荣、王连胜、郭继权、黄勇、赵晓鹏 2009 58 3124]

    [15]

    ]Liu H, Zhao X P, Yang Y, Li Q W, Lv J 2008 Adv. Mater. 20 2050

    [16]

    ]Liu B Q, Zhao X P, Zhu W R, Luo W, Cheng X C 2008 Adv. Funct. Mater. 18 3523

    [17]

    ]Christopher M B, Tao H, Liu X L, Richard D A, Zhang X, Padilla W J 2008 Opt. Express. 16 18565

    [18]

    ]Munk B A, Pryor J B, Gan Y B 2004 Electromagnetic Materials Proc. of the Symposium F 2003 (Singapore:World Scientific Publishing Company) p977

    [19]

    ]Zhou J, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101

    [20]

    ]Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. B 75 235114

    [21]

    ]Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

  • [1] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法.  , 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] 涂成发, 郑祖应, 乔亮, 郝宏波, 马云国, 孙哲, 王浩, 王涛, 李发伸. 易面型Y2Co17稀土软磁复合材料的雷达波吸收和带宽机理.  , 2022, 71(18): 184201. doi: 10.7498/aps.71.20220665
    [3] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器.  , 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [4] 汪静丽, 陈子玉, 陈鹤鸣. 基于夹层结构的偏振无关1×2定向耦合型解复用器的设计.  , 2021, 70(1): 014202. doi: 10.7498/aps.70.20200721
    [5] 陈志鹏, 於文静, 高雷. 非局域颗粒复合介质的相干完美吸收效应.  , 2019, 68(5): 051101. doi: 10.7498/aps.68.20182108
    [6] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强.  , 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [7] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究.  , 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [8] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究.  , 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [9] 王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐. 新型量子点场效应增强型单光子探测器.  , 2013, 62(19): 194205. doi: 10.7498/aps.62.194205
    [10] 刘柱, 赵志飞, 郭浩民, 王玉琦. InAs/GaSb量子阱的能带结构及光吸收.  , 2012, 61(21): 217303. doi: 10.7498/aps.61.217303
    [11] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料.  , 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [12] 延凤平, 刘鹏, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 双包层稀土掺杂光纤抽运吸收特性的分析.  , 2012, 61(16): 164203. doi: 10.7498/aps.61.164203
    [13] 保石, 罗春荣, 赵晓鹏. S波段超材料完全吸收基板微带天线.  , 2011, 60(1): 014101. doi: 10.7498/aps.60.014101
    [14] 张燕萍, 赵晓鹏, 保石, 罗春荣. 基于阻抗匹配条件的树枝状超材料吸收器.  , 2010, 59(9): 6078-6083. doi: 10.7498/aps.59.6078
    [15] 罗春荣, 王连胜, 郭继权, 黄勇, 赵晓鹏. 电流变液调控的连通树枝状结构左手材料.  , 2009, 58(5): 3214-3219. doi: 10.7498/aps.58.3214
    [16] 朱忠奎, 罗春荣, 赵晓鹏. 一种新型的树枝状负磁导率材料微带天线.  , 2009, 58(9): 6152-6157. doi: 10.7498/aps.58.6152
    [17] 刘小毅, 张方迪, 张 民, 叶培大. 基于谐振吸收效应的单模单偏振光子晶体光纤研究.  , 2007, 56(1): 301-307. doi: 10.7498/aps.56.301
    [18] 尚小明, 王丛方, 王晶晶, 邹英华, 杨文军, 宋延林, 罗传秋, 陈惠英. 翠绿亚胺碱的超快光克尔和光致吸收效应.  , 1997, 46(12): 2363-2368. doi: 10.7498/aps.46.2363
    [19] 徐至展, 余玮. 共振吸收的场结构与密度轮廓变陡.  , 1983, 32(11): 1383-1391. doi: 10.7498/aps.32.1383
    [20] 顾世杰, 黄锡毅. 不稳定局域模及其对杂质中心吸收带宽的影响.  , 1965, 21(7): 1406-1418. doi: 10.7498/aps.21.1406
计量
  • 文章访问数:  10043
  • PDF下载量:  1402
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-11
  • 修回日期:  2009-07-27
  • 刊出日期:  2010-05-15

/

返回文章
返回
Baidu
map