搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y3Al5O12的热输运性质的第一性原理研究

刘铖铖 曹全喜

引用本文:
Citation:

Y3Al5O12的热输运性质的第一性原理研究

刘铖铖, 曹全喜

First-principles study of the thermal transport property of Y3Al5O12

Liu Cheng-Cheng, Cao Quan-Xi
PDF
导出引用
  • 基于密度泛函微扰理论(DFPT)结合模守恒赝势方法进行晶格动力学模拟.得到了钇铝石榴石(YAG)的声子态密度、分波声子态密度和声子的色散谱.利用第一Brillouin区的特殊点取样方法,计算了YAG的比热容和布局数平均的声子群速度.在非谐相互作用下,利用Fermi黄金公式结合第一Brillouin区的特殊点取样方法,得出了YAG非谐声子平均自由程.综合考虑了两种声子散射机制,得到了YAG陶瓷的热导率.结果表明,对于YAG陶瓷,在低温时,晶界散射将对热阻起主要作用;在高于一定温度时,三声子相互作用对热阻的贡献将占主导地位.同时也从理论上证明了Sato等提出的在室温以上,YAG陶瓷与单晶的热导率的差异可以忽略的观点.所得到的热导率、比热容随温度的变化与实验结果很好地符合.
    Based on density functional perturbation theory (DFPT) combined with the norm-conserving pseudopotential method,the lattice dynamic simulation is presented. The total phonon density of states,partial phonon density of states and phonon dispersion spectrum of YAG are obtained. By using the special point sampling method within the first Brillouin zone,the special heat capacity and the population averaged group speed of phonon of YAG are calculated. The anharmonic phonon mean free path is calculated theoretically within anharmonic interaction and by using the Fermis golden rule scheme combined with the special point sampling method within the first Brillouin zone. We comprehensively considered two types of the phonon scattering mechanisms,the thermal conductivity of YAG ceramic is obtained. The result indicates that the grain boundary scattering plays a major role in the thermal resistance at low temperature in YAG ceramic,while the three-phonon interaction contribution to the thermal resistance will prevail above a certain temperature. Meanwhile,the viewpoint held by Y. Sato et al. that the difference of the thermal conductivity of between YAG ceramic and single crystal can be ignored above room temperature is theoretically proved. The temperature variations of the calculated thermal conductivity and special heat capacity agree well with the experimental results.
    [1]

    [1]Fields R C,Birnhaum M,Fincher L 1987 Appl. Phys. Lett. 51 1885

    [2]

    [2]Li S M,Huang W L 2005 Theory and Design of Laser Devices (2th) (Beijing: National Defense Industry Press) p179 (in Chinese) [李适民、黄维玲 2005 激光器件原理与设计(第二版)(北京:国防工业出版社)第179页]

    [3]

    [3]Koechner W 2006 Solid State Laser Engineering (6th Ed.) (Berlin: Springer) p55

    [4]

    [4]Liu C,Ge J H,Xiang Z,Chen J 2008 Acta Phys. Sin. 57 1704 (in Chinese) [刘崇、 葛剑虹、项震、陈军 2008 57 1704]

    [5]

    [5]Song X L,Guo Z,Li B B,Wang S Y,Cai D F,Wen J G 2009 Acta Phys. Sin. 58 1700 (in Chinese) [宋小鹿、过振、李兵斌、王石语、蔡德芳、文建国 2009 58 1700]

    [6]

    [6]Tang B,Shu X J,Chen F L 2005 High Power Laser Part. Beams 17 71 (in Chinese) [唐兵、束小建、陈发良 2005 强激光与粒子束 17 71]

    [7]

    [7]Zhang Y P,Zhang H Y,Zhong K,Wang P,Li X F,Yao J Q 2009 Acta Phys. Sin. 58 3193 (in Chinese) [张玉萍、张会云、钟凯、王鹏、李喜福、姚建铨 2009 58 3193]

    [8]

    [8]Wang N,Lu Y T,Li X L,Jiao Z Y 2008 Acta Phys. Sin. 57 5632(in Chinese) [王宁、陆雨田、李晓莉、焦志勇 2008 57 5632]

    [9]

    [9]Hurrell J P,Porto S P S,Chan I F,Mirta S S,Bauman P 1968 Phys. Rev. 173 851

    [10]

    ]Stoddart P R,Ngoepe P E,Mjwara P M,Comis J D,Saunders G A 1993 J. Appl. Phys. 73 7298

    [11]

    ]Srivastava G P 1990 The Physics of Phonons (Bristol: Adam Hilger)

    [12]

    ]Baroni S,Gironcoli S,Corso A D,Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [13]

    ]Kohn W,Sham L J 1965 Phys. Rev. 140 A1133

    [14]

    ]Perdew J P,Chevary J A,Vosko S H,Jackson K A,Pederson M R,Singh D J 1992 Phys. Rev. B 46 6671

    [15]

    ]Monkhorst H J,Park J D 1976 Phys. Rev. B 13 5188

    [16]

    ]AlShaikhi A,Srivastava G P 2007 Phys. Rev. B 76 195205

    [17]

    ]Yogurtcu Y K,Miller A J,Saunders G A 1980 J. Phys. C 13 6585

    [18]

    ]Euler F,Bruce J A 1965 Acta Crystallogr. 19 971

    [19]

    ]Sato Y,Akiyama J,Taira T 2009 Opt. Mater. 31 720

    [20]

    ]Ziman J M 1960 Electrons and Phonons (Oxford: Clarendon)

  • [1]

    [1]Fields R C,Birnhaum M,Fincher L 1987 Appl. Phys. Lett. 51 1885

    [2]

    [2]Li S M,Huang W L 2005 Theory and Design of Laser Devices (2th) (Beijing: National Defense Industry Press) p179 (in Chinese) [李适民、黄维玲 2005 激光器件原理与设计(第二版)(北京:国防工业出版社)第179页]

    [3]

    [3]Koechner W 2006 Solid State Laser Engineering (6th Ed.) (Berlin: Springer) p55

    [4]

    [4]Liu C,Ge J H,Xiang Z,Chen J 2008 Acta Phys. Sin. 57 1704 (in Chinese) [刘崇、 葛剑虹、项震、陈军 2008 57 1704]

    [5]

    [5]Song X L,Guo Z,Li B B,Wang S Y,Cai D F,Wen J G 2009 Acta Phys. Sin. 58 1700 (in Chinese) [宋小鹿、过振、李兵斌、王石语、蔡德芳、文建国 2009 58 1700]

    [6]

    [6]Tang B,Shu X J,Chen F L 2005 High Power Laser Part. Beams 17 71 (in Chinese) [唐兵、束小建、陈发良 2005 强激光与粒子束 17 71]

    [7]

    [7]Zhang Y P,Zhang H Y,Zhong K,Wang P,Li X F,Yao J Q 2009 Acta Phys. Sin. 58 3193 (in Chinese) [张玉萍、张会云、钟凯、王鹏、李喜福、姚建铨 2009 58 3193]

    [8]

    [8]Wang N,Lu Y T,Li X L,Jiao Z Y 2008 Acta Phys. Sin. 57 5632(in Chinese) [王宁、陆雨田、李晓莉、焦志勇 2008 57 5632]

    [9]

    [9]Hurrell J P,Porto S P S,Chan I F,Mirta S S,Bauman P 1968 Phys. Rev. 173 851

    [10]

    ]Stoddart P R,Ngoepe P E,Mjwara P M,Comis J D,Saunders G A 1993 J. Appl. Phys. 73 7298

    [11]

    ]Srivastava G P 1990 The Physics of Phonons (Bristol: Adam Hilger)

    [12]

    ]Baroni S,Gironcoli S,Corso A D,Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [13]

    ]Kohn W,Sham L J 1965 Phys. Rev. 140 A1133

    [14]

    ]Perdew J P,Chevary J A,Vosko S H,Jackson K A,Pederson M R,Singh D J 1992 Phys. Rev. B 46 6671

    [15]

    ]Monkhorst H J,Park J D 1976 Phys. Rev. B 13 5188

    [16]

    ]AlShaikhi A,Srivastava G P 2007 Phys. Rev. B 76 195205

    [17]

    ]Yogurtcu Y K,Miller A J,Saunders G A 1980 J. Phys. C 13 6585

    [18]

    ]Euler F,Bruce J A 1965 Acta Crystallogr. 19 971

    [19]

    ]Sato Y,Akiyama J,Taira T 2009 Opt. Mater. 31 720

    [20]

    ]Ziman J M 1960 Electrons and Phonons (Oxford: Clarendon)

  • [1] 徐浩哲, 徐象繁. Al2O3基导热聚合物中的热逾渗网络.  , 2023, 72(2): 024401. doi: 10.7498/aps.72.20221400
    [2] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析.  , 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [3] 潘东楷, 宗志成, 杨诺. 纳米尺度热物理中的声子弱耦合问题.  , 2022, 71(8): 086302. doi: 10.7498/aps.71.20220036
    [4] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析.  , 2021, (): . doi: 10.7498/aps.70.20211857
    [5] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究.  , 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [6] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率.  , 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [7] 霍龙桦, 谢国锋. 表面低配位原子对声子的散射机制.  , 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [8] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响.  , 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [9] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟.  , 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [10] 邓发明, 高涛, 沈艳红, 龚艳蓉. 强激光辐照对3C-SiC晶体结构稳定性的影响.  , 2015, 64(4): 046301. doi: 10.7498/aps.64.046301
    [11] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率.  , 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [12] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟.  , 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [13] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [14] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正.  , 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [15] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [16] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象.  , 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [17] 陈东阁, 唐新桂, 贾振华, 伍君博, 熊惠芳. Al2O3-Y2O3-ZrO2三相复合陶瓷的介电谱研究.  , 2011, 60(12): 127701. doi: 10.7498/aps.60.127701
    [18] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究.  , 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [19] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运.  , 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [20] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究.  , 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
计量
  • 文章访问数:  9827
  • PDF下载量:  1952
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-15
  • 修回日期:  2009-08-11
  • 刊出日期:  2010-02-05

/

返回文章
返回
Baidu
map