搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

囚禁离子非线性Jaynes-Cummings模型量子场熵演化特性

刘王云 毕思文 豆西博

引用本文:
Citation:

囚禁离子非线性Jaynes-Cummings模型量子场熵演化特性

刘王云, 毕思文, 豆西博

Evolution properties of the field quantum entropy in the nonlinear Jaynes-Cummings model of a trapped ion

Liu Wang-Yun, Bi Si-Wen, Dou Xi-Bo
PDF
导出引用
  • 利用Von Neuuman量子约化熵理论研究了驻波激光场与囚禁在谐振势中的离子单量子共振相互作用系统中量子场熵的时间演化特性,通过数值计算详细讨论了Lamb-Dick参数、离子质心在驻波激光场中的位置以及囚禁离子初始状态对量子场熵演化特性的影响.结果表明:Lamb-Dick参数影响囚禁离子与驻波激光场之间量子纠缠的频率和幅度,其值越大离子与光场之间的平均纠缠程度越低;随着离子质心从驻波激光场的波节向波腹移动,二者之间量子纠缠的振荡频率逐渐变慢,纠缠强度逐渐减弱;随着囚禁离子处于激发态概率的减小,离子与光场
    The time evolution properties of the field quantum entropy in the system of a trapped ion interacting resonantly with a standing-wave laser field is studied by utilizing the Von Neumann reduced quantum entropy theory, and our attention focuses on the discussion of the influence of the Lamb-Dick parameter, the position of the ion in the standing-wave laser field and the initial state of the trapped ion on the evolution properties of the field quantum entropy. The results obtained from the numerical calculation indicate that: the value of the Lamb-Dick parameter effect the oscillation frequency and amplitude of the quantum entanglement between the trapped ion and the standing-wave laser field, the larger the Lamb-Dick parameter is, the weaker the average entanglement level between the ion and the field will be. When moving the tapped ion from the node of the standing-wave laser to the loop, the vibration frequency of the quantum entanglement between the field and the ion becomes slow gradually, and the entanglement degree gets weaker and weaker. With the decrease of the probability of the trapped ion being in the excited state, the quantum entanglement between the trapped ion and the stanging-wave laser field shows the tendency of increase first and then decrease. These properties have certain reference value for the preparation of entangled states and for the quantum communications with the thapped ion, and so on.
    • 基金项目: 中国科学院西安光学精密机械研究所知识创新工程和前沿学科布局项目(批准号:0654311213)资助的课题.
    [1]

    [1]Yang Z Y, Hou X 2000 Journal of Sangluo Normal College 14 1(in Chinese)[杨志勇、侯洵 2000 商洛师范专科学校学报 14 1]

    [2]

    [2]Phoenix S J D , Knight PL 1988 Ann. Phys. 186 381

    [3]

    [3]Phoenix S J D, Knight P L 1990 J. Opt. Soc. Am. B 7 116

    [4]

    [4]Phoenix S J D, Knight P L 1991 Phys. Rev. A 44 6023

    [5]

    [5]Fang M F, Liu H E 1995 Phys. Lett. A 200 250

    [6]

    [6]Liu X 2000 Physica A 286 588

    [7]

    [7]Liu W Y, Yang Z Y, An Y Y 2008 Science in China Series G 51 1264

    [8]

    [8]Liu W Y, An Y Y, Yang Z Y 2007 Chin. Phys. 16 3704

    [9]

    [9]Wang X G 2001 Phys. Rev. A 64 022302

    [10]

    ]Xu J S, Li C F, Guo G C 2006 Phys. Rev. A 74 052311

    [11]

    ]Liu C L, Zheng Y Z 2006 Acta Phys. Sin. 55 6222 (in Chinese)[刘传龙、郑亦庄 2006 55 6222]

    [12]

    ]Zhou X Q, Wu Y W 2007 Acta Phys. Sin. 56 1881 (in Chinese)[周小清、邬云文 2007 56 1881]

    [13]

    ]Wang S K, Ren J G, Jin X M, Yang B, Yang D, Peng C Z, Jiang S, Wang X B 2008 Acta Phys. Sin. 57 1356 (in Chinese)[王少凯、任继刚、金贤敏、杨彬、杨冬、彭承志、蒋硕、王向斌 2008 57 1356]

    [14]

    ]Wang J X, Yang Z Y, An Y Y 2007 Acta Phys. Sin. 56 6420 (in Chinese)[王菊霞、杨志勇、安毓英 2007 56 6420]

    [15]

    ]Zeng H P, Lin F C 1994 Phys. Rev. A 50 R3589

    [16]

    ]Semiǎo F L, Vidiella-Barranco A, Roversi J A 2001 Phys. Rev. A 64 024305

    [17]

    ]Li G X , Tan H T, Wu S P 2004 Phys. Rev. A 70 064301

    [18]

    ]Zheng X J, Fang M F, Cai J W, Cao S, Liao X P 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4701

    [19]

    ]Zhang M, Jia H Y 2008 Acta Phys. Sin. 57 880 (in Chinese)[张淼、贾焕玉 2008 57 880]

    [20]

    ]Zhang M, Jia H Y, Ji X H, Si K, Wei L F 2008 Acta Phys. Sin. 57 7650 (in Chinese)[张淼、贾焕玉、姬晓辉、司坤、韦联福 2008 57 7650]

    [21]

    ]Qu Z J, Liu S D, Yang C L 2005 Acta Phys. Sin. 54 1156 (in Chinese)[曲照军、柳盛典、杨传路 2005 54 1156]

    [22]

    ]Luo X L, Zhu X W, Wu Y, Feng M, Gao K L 1998 Phys. Lett. A 237 354

    [23]

    ]Wang Z Q, Duan C K, An G L 2006 Acta Phys. Sin. 55 3438 (in Chinese)[汪仲清、段昌奎、安广雷 2006 55 3438]

  • [1]

    [1]Yang Z Y, Hou X 2000 Journal of Sangluo Normal College 14 1(in Chinese)[杨志勇、侯洵 2000 商洛师范专科学校学报 14 1]

    [2]

    [2]Phoenix S J D , Knight PL 1988 Ann. Phys. 186 381

    [3]

    [3]Phoenix S J D, Knight P L 1990 J. Opt. Soc. Am. B 7 116

    [4]

    [4]Phoenix S J D, Knight P L 1991 Phys. Rev. A 44 6023

    [5]

    [5]Fang M F, Liu H E 1995 Phys. Lett. A 200 250

    [6]

    [6]Liu X 2000 Physica A 286 588

    [7]

    [7]Liu W Y, Yang Z Y, An Y Y 2008 Science in China Series G 51 1264

    [8]

    [8]Liu W Y, An Y Y, Yang Z Y 2007 Chin. Phys. 16 3704

    [9]

    [9]Wang X G 2001 Phys. Rev. A 64 022302

    [10]

    ]Xu J S, Li C F, Guo G C 2006 Phys. Rev. A 74 052311

    [11]

    ]Liu C L, Zheng Y Z 2006 Acta Phys. Sin. 55 6222 (in Chinese)[刘传龙、郑亦庄 2006 55 6222]

    [12]

    ]Zhou X Q, Wu Y W 2007 Acta Phys. Sin. 56 1881 (in Chinese)[周小清、邬云文 2007 56 1881]

    [13]

    ]Wang S K, Ren J G, Jin X M, Yang B, Yang D, Peng C Z, Jiang S, Wang X B 2008 Acta Phys. Sin. 57 1356 (in Chinese)[王少凯、任继刚、金贤敏、杨彬、杨冬、彭承志、蒋硕、王向斌 2008 57 1356]

    [14]

    ]Wang J X, Yang Z Y, An Y Y 2007 Acta Phys. Sin. 56 6420 (in Chinese)[王菊霞、杨志勇、安毓英 2007 56 6420]

    [15]

    ]Zeng H P, Lin F C 1994 Phys. Rev. A 50 R3589

    [16]

    ]Semiǎo F L, Vidiella-Barranco A, Roversi J A 2001 Phys. Rev. A 64 024305

    [17]

    ]Li G X , Tan H T, Wu S P 2004 Phys. Rev. A 70 064301

    [18]

    ]Zheng X J, Fang M F, Cai J W, Cao S, Liao X P 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4701

    [19]

    ]Zhang M, Jia H Y 2008 Acta Phys. Sin. 57 880 (in Chinese)[张淼、贾焕玉 2008 57 880]

    [20]

    ]Zhang M, Jia H Y, Ji X H, Si K, Wei L F 2008 Acta Phys. Sin. 57 7650 (in Chinese)[张淼、贾焕玉、姬晓辉、司坤、韦联福 2008 57 7650]

    [21]

    ]Qu Z J, Liu S D, Yang C L 2005 Acta Phys. Sin. 54 1156 (in Chinese)[曲照军、柳盛典、杨传路 2005 54 1156]

    [22]

    ]Luo X L, Zhu X W, Wu Y, Feng M, Gao K L 1998 Phys. Lett. A 237 354

    [23]

    ]Wang Z Q, Duan C K, An G L 2006 Acta Phys. Sin. 55 3438 (in Chinese)[汪仲清、段昌奎、安广雷 2006 55 3438]

  • [1] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变.  , 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [2] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特.  , 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [3] 李金晴, 罗云荣, 海文华. 囚禁单离子的量子阻尼运动.  , 2017, 66(23): 233701. doi: 10.7498/aps.66.233701
    [4] 樊开明, 张国锋. 阻尼Jaynes-Cummings模型中两原子的量子关联动力学.  , 2013, 62(13): 130301. doi: 10.7498/aps.62.130301
    [5] 胡要花, 谭勇刚, 刘强. 强度相关耦合双Jaynes-Cummings模型中的纠缠和量子失谐.  , 2013, 62(7): 074202. doi: 10.7498/aps.62.074202
    [6] 李悦科, 张桂明, 高云峰. 非简并双光子Jaynes-Cummings模型腔场谱中的量子干涉.  , 2010, 59(3): 1786-1790. doi: 10.7498/aps.59.1786
    [7] 杨美蓉, 海文华, 鲁耿彪, 钟宏华. 激光脉冲作用下囚禁离子在Lamb-Dicke区域精确的量子运动.  , 2010, 59(4): 2406-2415. doi: 10.7498/aps.59.2406
    [8] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究.  , 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [9] 陈文钦, 海文华, 宋建文. 双δ激光脉冲作用下Paul阱中单离子的规则与混沌运动.  , 2008, 57(3): 1608-1615. doi: 10.7498/aps.57.1608
    [10] 艾凌艳, 杨 健, 张智明. 基于二维囚禁离子实现受控非门、交换门和相位门.  , 2008, 57(9): 5589-5592. doi: 10.7498/aps.57.5589
    [11] 王菊霞, 杨志勇, 安毓英. 多模光场与二能级原子相互作用的纠缠交换与保持.  , 2007, 56(11): 6420-6426. doi: 10.7498/aps.56.6420
    [12] 陈文钦, 海文华, 李 辉, 马志英. 脉冲式棘齿势场作用下囚禁离子的规则与混沌运动.  , 2007, 56(3): 1305-1312. doi: 10.7498/aps.56.1305
    [13] 汪仲清, 段昌奎, 安广雷. 囚禁离子的非线性Jaynes-Cummings模型及其布居数反转演化.  , 2006, 55(7): 3438-3442. doi: 10.7498/aps.55.3438
    [14] 曲照军, 柳盛典, 杨传路. 囚禁离子与单模场的相互作用.  , 2005, 54(3): 1156-1161. doi: 10.7498/aps.54.1156
    [15] 李飞, 海文华. 激光脉冲作用下囚禁离子的规则与混沌运动.  , 2004, 53(5): 1309-1315. doi: 10.7498/aps.53.1309
    [16] 方卯发, 刘翔. 驻波激光场中囚禁离子内外自由度的周期纠缠.  , 2001, 50(12): 2363-2368. doi: 10.7498/aps.50.2363
    [17] 方卯发, 刘翔. 双光子Jaynes-Cummings模型中量子力学通道与量子互熵.  , 2000, 49(3): 435-440. doi: 10.7498/aps.49.435
    [18] 顾樵. Jaynes-Cummings模型的量子统计性质.  , 1989, 38(5): 735-744. doi: 10.7498/aps.38.735
    [19] 罗耕贤, 郭光灿. 双色场Jaynes-Cummings模型的量子理论.  , 1988, 37(12): 1956-1964. doi: 10.7498/aps.37.1956
    [20] 李孝申. 量子统计的级联三能级Jaynes-Cummings模型.  , 1985, 34(6): 833-840. doi: 10.7498/aps.34.833
计量
  • 文章访问数:  9333
  • PDF下载量:  1008
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-02
  • 修回日期:  2009-06-16
  • 刊出日期:  2010-03-15

/

返回文章
返回
Baidu
map