搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合并束冷碰撞的单量子态氦原子束研究

魏龙 杜小娇 温金录 董俊峰 孙羽 胡水明

引用本文:
Citation:

合并束冷碰撞的单量子态氦原子束研究

魏龙, 杜小娇, 温金录, 董俊峰, 孙羽, 胡水明

Preparation of Single-Quantum-State-Selected Helium for Neutral Atom-Molecule Merged-Beams Collisions

WEI Long, DU Xiaojiao, WEN Jinlu, DONG Junfeng, SUN Yu, HU Shui-Ming
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 量子态选择的低温原子分子反应动力学研究是从原子分子层面探究分子间及分子内的微观反应机理,理解散射量子效应的关键研究手段之一。合并束低温碰撞实验方法通过将一反应物偏转后与沿直线飞行的另一反应物发生共线碰撞,获得毫开尔文量级的冷碰撞实验条件,并开展毫开尔文至百开尔文碰撞能的反应动力学研究。本文采用自主发展的永磁体“磁导”引导特定量子态的中性原子偏转后与分子束共线,通过对氦原子穿过磁导的通量测量,实验实现了三重态亚稳态23S1氦原子~10°角度偏转,并制备了MJ=+1磁子能级激发态氦原子。本工作为发展亚稳态氦原子与分子低于开尔文量级的量子态选择激发态冷碰撞研究提供实验基础,可以促进对激发态反应在星际介质演化中重要贡献的理解以及化学反应调控的研究。本研究中发展的“磁导”也在原子速度滤波和冷原子输运等领域具有重要的应用前景。
    The study of low-temperature atomic and molecular reaction dynamics in quantum state selection is one of the key research methods for exploring the collision reaction mechanisms and revealing quantum effects in scattering processes. The merged beams collision experiment method is a powerful approach to achieving cold collisions at mK collision energy, by deflecting one reactant beam to collide collinearly with another reactant beam.
    In this work, based on the Zeeman effect, the interaction between atomic magnetic moments and a magnetic field, we developed a permanent-magnet “magnetic guide” system to deflect metastable helium atom beams, with the objective of achieving collinear transport of neutral helium atoms and molecules in cold merged-beams collisions. Metastable helium atoms He(23S1) were produced via RF discharge. Utilizing this "magnetic guide", the quantum-state-resolved neutral helium atoms (He(23S1), MJ=+1) have been prepared. Helium flux measurements demonstrate ~10°deflection of metastable helium atoms with a flux exceeding 106 atoms/s, accompanied by successful preparation of MJ=+1 magnetic sublevel helium atoms. Furthermore, by combining the magnetic field measurements and magnetic force calculations for 23S1 metastable helium atom, the simulated trajectories propagating through the magnetic guide were analyzed.
    This work provides an experimental foundation for quantum-state-resolved cold collisions between excited-state helium and molecules below 1 K, advancing our understanding of cold reaction mechanisms governing interstellar medium evolution and promoting chemical reaction control. The developed magnetic guidance technology in this study also has important application prospects in fields such as atomic velocity filtering and cold atom transport.
    In the future, optical pumping experimental methods will be employed to pump 23S1helium atoms into the MJ=+1 magnetic sublevel helium atoms, enhancing the population of single quantum state. Moreover, two-dimensional magneto-optical traps and optical molasses will be implemented to optimize beam, which is expected to further improve the beam flux of helium atoms.
  • [1]

    Herbst E, Yates J T 2013Chem. Rev. 113, 8707.

    [2]

    Roueff E, Lique F 2013Chem. Rev. 113, 8906.

    [3]

    Gerlich D, Jusko P, Roučka Š, Zymak I, Plašil R, Glosík J Astrophys. 2012J. 749, 22-27.

    [4]

    Stuhl B K, Hummon M T, Ye J 2014Annu. Rev. Phys. Chem. 65, 501.

    [5]

    Perreault W E, Mukherjee N, Zare R N 2017Science 358, 356.

    [6]

    Amarasinghe C, Suits A G 2017J. Phys. Chem. Lett. 8, 5153.

    [7]

    Ni K K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, Miranda M H G De, Bohn J L, Ye J, Jin D S 2010Nature 464, 1324.

    [8]

    Karman T, Tomza M, Pérez-Ríos J 2024Nat. Phys. 20, 722.

    [9]

    Lavert-Ofir E, Shagam Y, Henson A B, Gersten S, Kłos J, Żuchowski P S, Narevicius J, Narevicius E 2014Nat. Chem. 6, 332.

    [10]

    Yang T, Huang L, Xiao Ch, Chen J, Wang T, Dai D, Lique F, Alexander M H, Sun Zh, Zhang D H, Yang X, Neumark D M 2019Nat. Chem. 11, 744.

    [11]

    Yang X, Zhang D H 2008Accounts Chem. Res. 41(8) 981.

    [12]

    Yang W, Sun D L, Zhou L, Wang J, Zhan M Sh 2014Acta Phys. Sin. 63(15) 153701(in Chinese) [杨威, 孙大立, 周林, 王谨, 詹明生2014 63(15) 153701].

    [13]

    Bethlem H L, Berden G, Meijer G 1999Phys. Rev. Lett. 83, 1558.

    [14]

    Hutzler N R, Lu Hsin-I, Doyle J M 2012Chem. Rev. 112, 4803.

    [15]

    Lemeshko M, Krems R V, Doyle J M, Kais S, 2013Mol. Phys. 111, 1648.

    [16]

    Egorov D, Lahaye T, Schöllkopf W, Friedrich B, Doyle J M, 2002Phys. Rev. A 66, 043401.

    [17]

    Jongh T de, Besemer M, Shuai Q, Karman T, van der Avoird A, Groenenboom G C, van de Meerakker S Y T 2020Science 6494, 626.

    [18]

    Qiu M, Ren Z, Che L, Dai D, Harich S A, Wang X, Yang X, Xu C, Xie D, Gustafsson M, Skodje R T, Sun Z, Zhang D H 2006Science 311, 1440.

    [19]

    Yang T, Yang X 2006Science 368, 582.

    [20]

    Henson A B, Gersten S, Shagam Y, Narevicius J, Narevicius E, 2012Science 338, 234.

    [21]

    Shagam Y, Narevicius E 2013J. Phys. Chem. C 117, 22454.

    [22]

    Klein A, Shagam Y, Skomorowski W, Zuchowski P S, Pawlak M, Janssen L M C, Moiseyev N, van de Meerakker S Y T, van der Avoird Ad, Koch C P, Narevicius E 2017Nat. Phys. 13, 35.

    [23]

    Shagam Y, Klein A, Skomorowski W, Yun R, Averbukh V, Koch C P, Narevicius E 2015Nat. Chem. 7, 921.

    [24]

    Paliwal P, Deb N, Reich D M, van der Avoird Ad, Koch C P, Narevicius E 2021Nat. Chem. 13, 94.

    [25]

    Jankunas J, Bertsche B, Osterwalder A, 2014J. Phys. Chem. A 118, 3875.

    [26]

    Gordon S D S, Omiste J J, Zou J, Tanteri S, Brumer P, Osterwalder A 2018Nat. Chem. 10, 1190.

    [27]

    Harada Y, Masuda S, Ozaki H 1997Chem. Rev. 97, 1897.

    [28]

    Kishimoto N, Oda T, Ohno K 2024Electron. Spectrosc. Relat. Phenom 137-140, 319.

    [29]

    Yamakita Y, Ohno K 2009J. Phys. Chem. A 113, 10779.

    [30]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, G. Drake W F, Bondy A T, Truscott A G, Baldwin K G H 2022Science 376, 199.

    [31]

    Chen J J, Sun Y R, Wen J L, Hu S M 2020Phys. Rev. A 101, 053824.

    [32]

    Even U 2015EPJ Tech. Instrum. 2 17.

    [33]

    Sun Y, Feng G P, Cheng C F, Tu L Y, Pan H, Yang G M, Hu S M 2012Acta Phys. Sin. 61 170601(in Chinese) [孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明2012 61 170601].

    [34]

    Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010Rev. Sci. Instr. 81 123106.

    [35]

    Chen J J, Sun Y, Wen J L, Hu S M 2021Acta Phys. Sin. 70(13) 133201(in Chinese) [陈娇娇, 孙羽, 温金录, 胡水明2021 70(13) 133201].

  • [1] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子.  , doi: 10.7498/aps.73.20240554
    [2] 赖赣平, 张晓卫. 考虑原子亚稳态的镥金属蒸发过程模拟研究.  , doi: 10.7498/aps.72.20230602
    [3] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞.  , doi: 10.7498/aps.71.20211308
    [4] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流.  , doi: 10.7498/aps.70.20201833
    [5] 管勇, 刘丹丹, 王心亮, 张辉, 施俊如, 白杨, 阮军, 张首刚. 绝热跃迁方法测量铯喷泉钟冷原子碰撞频移.  , doi: 10.7498/aps.69.20191800
    [6] 杨欢, 张穗萌, 邢玲玲, 吴兴举, 赵敏福. 电子垂直入射电离氦原子碰撞机理的理论研究.  , doi: 10.7498/aps.66.073401
    [7] 徐润东, 刘文良, 武寄洲, 马杰, 肖连团, 贾锁堂. 磁光阱中超冷钠-铯原子碰撞的实验研究.  , doi: 10.7498/aps.65.093201
    [8] 韩玉龙, 张侃, 凤尔银, 黄武英. Mg-CO(X1Σ+)体系的冷碰撞动力学.  , doi: 10.7498/aps.64.103402
    [9] 刁文婷, 何军, 刘贝, 王杰英, 王军民. 利用蓝失谐激光诱导微型光学偶极阱中冷原子间的光助碰撞提高单原子制备概率.  , doi: 10.7498/aps.63.023701
    [10] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性.  , doi: 10.7498/aps.62.115203
    [11] 陈展斌, 刘丽娟, 董晨钟. 64.6 eV电子碰撞电离氦原子(e, 2e)反应的理论研究.  , doi: 10.7498/aps.61.143401
    [12] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱.  , doi: 10.7498/aps.61.170601
    [13] 许忻平, 张海潮, 王育竹. 一种实现冷原子束聚集的微磁透镜新方案.  , doi: 10.7498/aps.61.223701
    [14] 臧华平, 李文峰, 令狐荣锋, 程新路, 杨向东. 20 Ne(34 Ne)原子与18 Na2(23 Na2,37 Na2)分子低温下冷碰撞的同位素效应研究.  , doi: 10.7498/aps.60.050303
    [15] 冯进钤, 徐伟. Duffing单边碰撞系统的混沌鞍合并激变.  , doi: 10.7498/aps.60.080502
    [16] 程存峰, 杨国民, 蒋蔚, 潘虎, 孙羽, 刘安雯, 成国胜, 胡水明. 激光冷却获得高亮度的亚稳态惰性气体原子束和原子阱.  , doi: 10.7498/aps.60.103701
    [17] 杨宁选, 蒋 军, 颉录有, 董晨钟. Breit相互作用对类氦离子亚稳态1s2s 3S1电子碰撞激发截面的影响.  , doi: 10.7498/aps.57.2888
    [18] 刘春雷, 何 斌, 颜 君, 王建国. O3+与氦原子碰撞过程的CTMC计算.  , doi: 10.7498/aps.56.327
    [19] 沈异凡, 李万兴. 异核Na(3P)+Cs(6P)系统的碰撞能量合并.  , doi: 10.7498/aps.45.774
    [20] 沈异凡, 李万兴. 激发态钠原子间的碰撞能量合并.  , doi: 10.7498/aps.45.29
计量
  • 文章访问数:  53
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-25

/

返回文章
返回
Baidu
map