-
量子态选择的低温原子分子反应动力学研究是从原子分子层面探究分子间及分子内的微观反应机理,理解散射量子效应的关键研究手段之一。合并束低温碰撞实验方法通过将一反应物偏转后与沿直线飞行的另一反应物发生共线碰撞,获得毫开尔文量级的冷碰撞实验条件,并开展毫开尔文至百开尔文碰撞能的反应动力学研究。本文采用自主发展的永磁体“磁导”引导特定量子态的中性原子偏转后与分子束共线,通过对氦原子穿过磁导的通量测量,实验实现了三重态亚稳态23S1氦原子~10°角度偏转,并制备了MJ=+1磁子能级激发态氦原子。本工作为发展亚稳态氦原子与分子低于开尔文量级的量子态选择激发态冷碰撞研究提供实验基础,可以促进对激发态反应在星际介质演化中重要贡献的理解以及化学反应调控的研究。本研究中发展的“磁导”也在原子速度滤波和冷原子输运等领域具有重要的应用前景。The study of low-temperature atomic and molecular reaction dynamics in quantum state selection is one of the key research methods for exploring the collision reaction mechanisms and revealing quantum effects in scattering processes. The merged beams collision experiment method is a powerful approach to achieving cold collisions at mK collision energy, by deflecting one reactant beam to collide collinearly with another reactant beam.
In this work, based on the Zeeman effect, the interaction between atomic magnetic moments and a magnetic field, we developed a permanent-magnet “magnetic guide” system to deflect metastable helium atom beams, with the objective of achieving collinear transport of neutral helium atoms and molecules in cold merged-beams collisions. Metastable helium atoms He(23S1) were produced via RF discharge. Utilizing this "magnetic guide", the quantum-state-resolved neutral helium atoms (He(23S1), MJ=+1) have been prepared. Helium flux measurements demonstrate ~10°deflection of metastable helium atoms with a flux exceeding 106 atoms/s, accompanied by successful preparation of MJ=+1 magnetic sublevel helium atoms. Furthermore, by combining the magnetic field measurements and magnetic force calculations for 23S1 metastable helium atom, the simulated trajectories propagating through the magnetic guide were analyzed.
This work provides an experimental foundation for quantum-state-resolved cold collisions between excited-state helium and molecules below 1 K, advancing our understanding of cold reaction mechanisms governing interstellar medium evolution and promoting chemical reaction control. The developed magnetic guidance technology in this study also has important application prospects in fields such as atomic velocity filtering and cold atom transport.
In the future, optical pumping experimental methods will be employed to pump 23S1helium atoms into the MJ=+1 magnetic sublevel helium atoms, enhancing the population of single quantum state. Moreover, two-dimensional magneto-optical traps and optical molasses will be implemented to optimize beam, which is expected to further improve the beam flux of helium atoms.-
Keywords:
- metastable helium atoms /
- cold collisions /
- merged-beams
-
[1] Herbst E, Yates J T 2013Chem. Rev. 113, 8707.
[2] Roueff E, Lique F 2013Chem. Rev. 113, 8906.
[3] Gerlich D, Jusko P, Roučka Š, Zymak I, Plašil R, Glosík J Astrophys. 2012J. 749, 22-27.
[4] Stuhl B K, Hummon M T, Ye J 2014Annu. Rev. Phys. Chem. 65, 501.
[5] Perreault W E, Mukherjee N, Zare R N 2017Science 358, 356.
[6] Amarasinghe C, Suits A G 2017J. Phys. Chem. Lett. 8, 5153.
[7] Ni K K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, Miranda M H G De, Bohn J L, Ye J, Jin D S 2010Nature 464, 1324.
[8] Karman T, Tomza M, Pérez-Ríos J 2024Nat. Phys. 20, 722.
[9] Lavert-Ofir E, Shagam Y, Henson A B, Gersten S, Kłos J, Żuchowski P S, Narevicius J, Narevicius E 2014Nat. Chem. 6, 332.
[10] Yang T, Huang L, Xiao Ch, Chen J, Wang T, Dai D, Lique F, Alexander M H, Sun Zh, Zhang D H, Yang X, Neumark D M 2019Nat. Chem. 11, 744.
[11] Yang X, Zhang D H 2008Accounts Chem. Res. 41(8) 981.
[12] Yang W, Sun D L, Zhou L, Wang J, Zhan M Sh 2014Acta Phys. Sin. 63(15) 153701(in Chinese) [杨威, 孙大立, 周林, 王谨, 詹明生2014 63(15) 153701].
[13] Bethlem H L, Berden G, Meijer G 1999Phys. Rev. Lett. 83, 1558.
[14] Hutzler N R, Lu Hsin-I, Doyle J M 2012Chem. Rev. 112, 4803.
[15] Lemeshko M, Krems R V, Doyle J M, Kais S, 2013Mol. Phys. 111, 1648.
[16] Egorov D, Lahaye T, Schöllkopf W, Friedrich B, Doyle J M, 2002Phys. Rev. A 66, 043401.
[17] Jongh T de, Besemer M, Shuai Q, Karman T, van der Avoird A, Groenenboom G C, van de Meerakker S Y T 2020Science 6494, 626.
[18] Qiu M, Ren Z, Che L, Dai D, Harich S A, Wang X, Yang X, Xu C, Xie D, Gustafsson M, Skodje R T, Sun Z, Zhang D H 2006Science 311, 1440.
[19] Yang T, Yang X 2006Science 368, 582.
[20] Henson A B, Gersten S, Shagam Y, Narevicius J, Narevicius E, 2012Science 338, 234.
[21] Shagam Y, Narevicius E 2013J. Phys. Chem. C 117, 22454.
[22] Klein A, Shagam Y, Skomorowski W, Zuchowski P S, Pawlak M, Janssen L M C, Moiseyev N, van de Meerakker S Y T, van der Avoird Ad, Koch C P, Narevicius E 2017Nat. Phys. 13, 35.
[23] Shagam Y, Klein A, Skomorowski W, Yun R, Averbukh V, Koch C P, Narevicius E 2015Nat. Chem. 7, 921.
[24] Paliwal P, Deb N, Reich D M, van der Avoird Ad, Koch C P, Narevicius E 2021Nat. Chem. 13, 94.
[25] Jankunas J, Bertsche B, Osterwalder A, 2014J. Phys. Chem. A 118, 3875.
[26] Gordon S D S, Omiste J J, Zou J, Tanteri S, Brumer P, Osterwalder A 2018Nat. Chem. 10, 1190.
[27] Harada Y, Masuda S, Ozaki H 1997Chem. Rev. 97, 1897.
[28] Kishimoto N, Oda T, Ohno K 2024Electron. Spectrosc. Relat. Phenom 137-140, 319.
[29] Yamakita Y, Ohno K 2009J. Phys. Chem. A 113, 10779.
[30] Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, G. Drake W F, Bondy A T, Truscott A G, Baldwin K G H 2022Science 376, 199.
[31] Chen J J, Sun Y R, Wen J L, Hu S M 2020Phys. Rev. A 101, 053824.
[32] Even U 2015EPJ Tech. Instrum. 2 17.
[33] Sun Y, Feng G P, Cheng C F, Tu L Y, Pan H, Yang G M, Hu S M 2012Acta Phys. Sin. 61 170601(in Chinese) [孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明2012 61 170601].
[34] Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010Rev. Sci. Instr. 81 123106.
[35] Chen J J, Sun Y, Wen J L, Hu S M 2021Acta Phys. Sin. 70(13) 133201(in Chinese) [陈娇娇, 孙羽, 温金录, 胡水明2021 70(13) 133201].
计量
- 文章访问数: 53
- PDF下载量: 3
- 被引次数: 0