-
采用885 nm半导体激光双端泵Nd:YAG三镜环形腔获取高功率、高光束质量、可调谐的准连续微秒脉冲1319 nm激光. 通过腔镜镀膜和腔内插入标准具,分别抑制Nd:YAG的1064 nm与1338 nm谱线起振. 薄膜偏振片用作环形腔的输出镜,与半波片配合实现输出耦合率连续可调. 885 nm抽运功率150 W时,在热近非稳腔运转条件下获得重复频率800 Hz、脉冲宽度150 s、 平均功率22.5 W的1319 nm偏振激光输出,光束质量因子Mx2= 1.35,My2=1.24. 腔内插入1319 nm的倍频晶体KTiOPO4,通过二次谐波效应使高强度的尖峰脉冲序列减弱,实现激光脉冲弛豫振荡的有效抑制. 精确控制标准具温度,实现激光波长从1318.888 nm精细调谐到1319.358 nm,调谐范围为470 pm(81 GHz),相应的调谐精度为0.7 pm(125 MHz).The 1319 nm lasers have important applications in the fields of optical fiber communication, laser medical treatment and laser color display. The Nd:YAG laser pumped by 808 nm laser diode is an efficient alternative to achieving 1319 nm laser output. In recent years, direct pump technology using 885 nm laser diodes has become more promising due to the dramatically reduced thermal effect and improved optical conversion efficiency. Quasi-continuous sodium beacon laser with microsecond pulse duration generated by the sum-frequency of 1319 nm and 1064 nm lasers can provide a gatable pulse format to eliminate the interference of atmospheric Rayleigh scattering and mitigate the spot elongation of sodium guide star to improve imaging accuracy. However, relaxation oscillation in the microsecond pulse could cause the damage to the nonlinear crystal and reduce the efficiency of sum-frequency generation. It is effective to suppress the relaxation by taking advantage of second harmonic generation, in which a nonlinear crystal is utilized to reduce the pulse peaks with higher intensity. In this paper, we demonstrate a high-power relaxation-oscillation-free quasi-continuous microsecond pulse 1319 nm laser by using the dual-end 885 nmdiode-pumped three-mirror ring-cavity. Intra-cavity etalon and customized mirror coating are employed to prevent the 1064 nmand 1338 nmline of Nd:YAG laser crystal from oscillating. A power tuning device, including a thin-film polarizer and a halfwave plate is implemented as the output mirror of ring cavity, which enables continuous adjustment of the out coupling ratio. The output power of the 1319 nm polarized laser is 22.5 W pumped by 150 W 885 nm laser diode. The repetition rate is 800 Hz and pulse width is 150 s. The corresponding optical conversion efficiency is 15%. The beam quality factor M2 is measured to be Mx2= 1.35 and My2=1.24. By precisely adjusting the temperature of etalon viz. adjusting refractive index as well as thickness of the etalon material, laser wavelength is tuned from 1318.888 nm to 1319.358 nm, corresponding to a tunable range of 470 pm and tuning accuracy of 0.7 pm. A 1319 nm frequency doubling crystal KTiOPO4 (5 mm5 mm15 mm, = 59:8 and ϕ = 0) is inserted into the cavity to suppress the relaxation oscillation. The pulse waveform quickly reaches a smooth regime, followed by a pulse spike at the initial stage and the loss of laser output power is only 1%. It is proved that it can be efficiently suppressed by inserting a frequency doubling crystal with negligible power loss. In conclusion, this paper provides a practical and effective technical means for achieving the high-power relaxation-oscillation-free quasi-continuous 1319 nm laser with microsecond pulse duration.
-
Keywords:
- 885 nm dual-end pump /
- ring cavity /
- relaxation oscillation /
- tunable wavelength
[1] Xie S Y, Lu Y F, Ma Q L, Wang P Y, Shen Y, Zong N, Yang F, Bo Y, Peng Q J, Cui D F, Xu Z Y 2010 Chin. Phys. B 19 64208
[2] Lian W Y, Zhou Y, Wang T Y, Zhang G Z, Xiang W H 2007 Laser { Infrared 37 508 (in Chinese) [廉伟艳, 周瑜, 王廷营, 张贵忠, 向望华 2007 激光与红外 37 508]
[3] Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Chen J, Chen W D, Chen Z Q 2007 Appl. Opt. 46 384
[4] Wang T, Yao J Q, Zhao P, Cai B J, Wang P 2005 Proc. SPIE 5627 121
[5] Sun Z P, Li R N, Bi Y, Yang Y D, Bo Y, Hou W, Lin X C, Zhang H B, Cui D F, Xu Z Y 2004 Opt. Express 12 6428
[6] Mu X D, Ding Y J 2005 Opt. Lett. 30 1372
[7] Lin B, Xiao K, Zhang Q L, Zhang D X, Feng B H, Li Q N, He J L 2016 Appl. Opt. 55 1844
[8] Liu H, Yao J Q, Zheng F H, Lu Y, Wang P 2008 Acta Phys. Sin. 57 230 (in Chinese) [刘欢, 姚建铨, 郑芳华, 路洋, 王鹏 2008 57 230]
[9] Lu Y F, Xie S Y, Bo Y, Cui Q J, Zong N, Gao H W, Peng Q J, Cui D F, Xu Z Y 2009 Acta Phys. Sin. 58 970 (in Chinese) [鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦 2009 58 970]
[10] Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 94208
[11] Zheng J K, Bo Y, Xie S Y, Zuo J W, Wang P Y, Guo Y D, Liu B L, Peng Q J, Cui D F, Lei W Q, Xu Z Y 2013 Chin. Phys. Lett. 30 074202
[12] Lu J H, Lu J R, Murai T, Takaichi K, Uematsu T, Xu J Q, Ueda K, Yagi H, Yanagitani T, Kaminskii A A 2002 Opt. Lett. 27 1120
[13] Li N, Pang Y, Lu Y H, Zhang L, Xie G, Wang W M, Xu X X {2013 Chin. J. Lasers 40 0802007 (in Chinese) [李楠, 庞毓, 鲁燕华, 张雷, 谢刚, 王卫民, 许晓小 2013 中国激光 40 0802007]
[14] Lavi R, Jackel S, Tal A, Lebiush E, Tzuk Y, Goldring S 2001 Opt. Commun. 195 427
[15] L Y F, Zhao L S, Zhai P, Xia J, Li S T, Fu X H 2012 Opt. Lett. 37 3177
[16] Li M L, Zhao W F, Zhang S B, Guo L, Hou W, Li J M, Lin X C 2012 Appl. Opt. 51 1241
[17] L Y F, Zhang X H, Xia J, Yin X D, Bao L, Quan H {2010 Laser Phys. 2 200
[18] Xu Z Y, Xie S Y, Bo Y, Zuo J W, Wang B S, Wang P Y, Wang Z C, Liu Y, Xu Y T, Xu J L, Peng Q J, Cui D F {2011 Acta Opt. Sin. 31 0900111 (in Chinese) [许祖彦, 谢仕永, 薄勇, 左军卫, 王保山, 王鹏远, 王志超, 刘苑, 徐一汀, 许家林, 彭钦军, 崔大复 2011 光学学报 31 0900111]
[19] Jeys T H 1991 Appl. Opt. 30 1011
[20] Johnson R P 2008 Opt. { Laser Technol. 40 1078
[21] Wang P Y 2014 Ph. D. Dissertation (Beijing: Technical Institute of Physics and Chemistry Chinese Academy of Sciences) (in Chinese) [王鹏远 2014 博士学位论文(北京: 中科院理化技术研究所)]
-
[1] Xie S Y, Lu Y F, Ma Q L, Wang P Y, Shen Y, Zong N, Yang F, Bo Y, Peng Q J, Cui D F, Xu Z Y 2010 Chin. Phys. B 19 64208
[2] Lian W Y, Zhou Y, Wang T Y, Zhang G Z, Xiang W H 2007 Laser { Infrared 37 508 (in Chinese) [廉伟艳, 周瑜, 王廷营, 张贵忠, 向望华 2007 激光与红外 37 508]
[3] Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Chen J, Chen W D, Chen Z Q 2007 Appl. Opt. 46 384
[4] Wang T, Yao J Q, Zhao P, Cai B J, Wang P 2005 Proc. SPIE 5627 121
[5] Sun Z P, Li R N, Bi Y, Yang Y D, Bo Y, Hou W, Lin X C, Zhang H B, Cui D F, Xu Z Y 2004 Opt. Express 12 6428
[6] Mu X D, Ding Y J 2005 Opt. Lett. 30 1372
[7] Lin B, Xiao K, Zhang Q L, Zhang D X, Feng B H, Li Q N, He J L 2016 Appl. Opt. 55 1844
[8] Liu H, Yao J Q, Zheng F H, Lu Y, Wang P 2008 Acta Phys. Sin. 57 230 (in Chinese) [刘欢, 姚建铨, 郑芳华, 路洋, 王鹏 2008 57 230]
[9] Lu Y F, Xie S Y, Bo Y, Cui Q J, Zong N, Gao H W, Peng Q J, Cui D F, Xu Z Y 2009 Acta Phys. Sin. 58 970 (in Chinese) [鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦 2009 58 970]
[10] Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 94208
[11] Zheng J K, Bo Y, Xie S Y, Zuo J W, Wang P Y, Guo Y D, Liu B L, Peng Q J, Cui D F, Lei W Q, Xu Z Y 2013 Chin. Phys. Lett. 30 074202
[12] Lu J H, Lu J R, Murai T, Takaichi K, Uematsu T, Xu J Q, Ueda K, Yagi H, Yanagitani T, Kaminskii A A 2002 Opt. Lett. 27 1120
[13] Li N, Pang Y, Lu Y H, Zhang L, Xie G, Wang W M, Xu X X {2013 Chin. J. Lasers 40 0802007 (in Chinese) [李楠, 庞毓, 鲁燕华, 张雷, 谢刚, 王卫民, 许晓小 2013 中国激光 40 0802007]
[14] Lavi R, Jackel S, Tal A, Lebiush E, Tzuk Y, Goldring S 2001 Opt. Commun. 195 427
[15] L Y F, Zhao L S, Zhai P, Xia J, Li S T, Fu X H 2012 Opt. Lett. 37 3177
[16] Li M L, Zhao W F, Zhang S B, Guo L, Hou W, Li J M, Lin X C 2012 Appl. Opt. 51 1241
[17] L Y F, Zhang X H, Xia J, Yin X D, Bao L, Quan H {2010 Laser Phys. 2 200
[18] Xu Z Y, Xie S Y, Bo Y, Zuo J W, Wang B S, Wang P Y, Wang Z C, Liu Y, Xu Y T, Xu J L, Peng Q J, Cui D F {2011 Acta Opt. Sin. 31 0900111 (in Chinese) [许祖彦, 谢仕永, 薄勇, 左军卫, 王保山, 王鹏远, 王志超, 刘苑, 徐一汀, 许家林, 彭钦军, 崔大复 2011 光学学报 31 0900111]
[19] Jeys T H 1991 Appl. Opt. 30 1011
[20] Johnson R P 2008 Opt. { Laser Technol. 40 1078
[21] Wang P Y 2014 Ph. D. Dissertation (Beijing: Technical Institute of Physics and Chemistry Chinese Academy of Sciences) (in Chinese) [王鹏远 2014 博士学位论文(北京: 中科院理化技术研究所)]
计量
- 文章访问数: 6536
- PDF下载量: 307
- 被引次数: 0