搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维处理法的微圆管质量运输特性预测方法研究

郑文鹏 陆小革 赵玉新 张臻 易仕和

引用本文:
Citation:

基于一维处理法的微圆管质量运输特性预测方法研究

郑文鹏, 陆小革, 赵玉新, 张臻, 易仕和

One Dimensional Approximation-Based Prediction Method for Mass Transfer Characteristics in Microtubes

ZHENG Wenpeng, LU Xiaoge, ZHAO Yuxin, ZHANG Zhen, YI Shihe
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 微通道传热传质相关基础问题在新材料、微电子、航空航天等工程领域有着重要的科研需求。本文针对微圆管内质量运输特性预测问题开展了数值方法研究及实验测量验证。采用一维近似处理方法简化可压缩流动方程组,建立了适用于微圆管质量运输特性预测的数值计算方法,结合范诺线方程及实验方法对数值计算方法的正确性和物理计算模型的有效性进行了检验,并详细分析了预测误差来源。主要得到以下结论:依据范诺线参数比理论结果与数值计算结果证明了数值计算方法的正确性。对比典型驱动压差条件下微圆管出口工况的计算与纹影结果,证明了数值方法关于流动壅塞预测的合理性。在质量流量预测方面,全层流阶段质量流量预测误差在3%以内,全湍流状态下的预测误差在8%以内,而当微圆管内流动包含层流至湍流的过渡过程时,预测误差则提高至29%,这是由于给定的转捩雷诺数以及摩擦系数计算公式的误差引入而造成的。
    The fundamental issues related to heat and mass transfer in microchannels have significant scientific research demands in various engineering fields, including new materials, microelectronics, and aerospace. This paper addresses the problem of predicting mass transport characteristics within microtubes by developing numerical methods, conducting experimental measurements for validation, and analyzing prediction errors.
    A one-dimensional approximation method is employed to simplify the compressible flow equations, and a fourth-order Runge-Kutta numerical method is used to iteratively solve the governing equations. A theoretical calculation method suitable for predicting mass transport characteristics in microtubes is established. This method can calculate various flow parameters along the length of the microtube and can handle different flow conditions, such as static pressure matching at the outlet or flow choking.
    Subsequently, by comparing the numerical calculation results with the theoretical results of the Fanuo line parameter ratio, the correctness of the numerical calculation method has been verified. Also, Schlieren experiments and a self-designed mass flow measurement device are used to qualitatively and quantitatively verify the effectiveness of physical computing models. Under typical driving pressure differences, the qualitative agreement between the calculated and schlieren results for the outlet conditions of the microtube demonstrate the rationality of the numerical method in terms of static pressure matching and flow choking calculations. Regarding mass flow prediction, comparisons between theoretical calculations and experimental measurements under different driving pressures revealed that when the flow inside the microtube is in a fully laminar state, the mass flow prediction error is within 3%. When the flow is fully turbulent, the prediction error is within 8%. However, when the flow involves a transition from laminar to turbulent, the prediction error increases to 29%.
    During the numerical calculations, the transition Reynolds number and the turbulent friction factor formula are set as input parameters based on existing research results. However, analysis of the Reynolds numbers along the length of the microtube and the average friction factors under different conditions show that the actual transition Reynolds number in the microtube is lower than the value set in the numerical calculations. Additionally, there is a significant discrepancy between the calculated turbulent friction factor and the actual value. Moreover, during the transition from laminar to turbulent flow, the friction factor should increase continuously with the Reynolds number, but the numerical calculations directly used the turbulent friction factor to represent this process. These factors are the main reasons for the larger mass flow prediction errors when the flow involves transition and turbulence.
  • [1]

    Berg H R, Seldam C A, Gulik P S 1993 J.Fluid.Mech. 246 1

    [2]

    Lorenzini M, Morini G L, Salvigni S 2010 Int.J.Therm. 49 248

    [3]

    Xin Fang, Xiangan Yue, Weiqing An, Xuegang Feng 2019 Microfluid.Nanofluidics.23 5

    [4]

    O Reynolds 1883 Philos.Trans. 174 935

    [5]

    Kawashima D, Yamada T, Hong C, Asako Y 2016 J.Mech.Eng. 230 420

    [6]

    ANSI N14.5 2022. American National Standard for Radioactive Materials Leak-age Teats on Packages for Shipment.

    [7]

    Anderson B L, Carlson R W, Fischer L E 1994 Nuclear Regulatory Commission, Washington, DC (United States). Div. of Industrial and Medical Nuclear Safety; Lawrence Livermore National Lab. (LLNL), Livermore, CA, United States

    [8]

    Chen C S, Kuo W J 2004 Numer.Heat.Transfer. 45 85

    [9]

    Asako Y, Nakayama K, Shinozuka T 2005 Int.J.Heat.Mass. Transfer. 48 4985

    [10]

    Asako Y, Pi T, Turner S E, Faghri M 2003 Int.J.Heat.Mass.Transfer. 46 3041

    [11]

    Murakami S, Toyoda K, Asako Y 2021 J.Fluids.Eng. 134 111301

    [12]

    Hong C, Asako Y, Suzuki K, Faghri M 2012 Numer.Heat.Transfer.61 163

    [13]

    Hong C, Tanaka G, Asako Y, Katanoda H 2018 Int.J.Heat.Mass.Transfer. 121 187

    [14]

    Lijo V, Kim H D, Setoguchi T 2012 Int.J.Heat.Mass.Transfer. 55 701

    [15]

    WANG H, XING J, SUN Z, GU H, SUN X, WANG Y 2023 AEST. 57 74

    [16]

    Agrawal A, Kushwaha H M, R S Jadhav J 2020 Microscale Flow and Heat Transfer (New York: Springer)

    [17]

    Shome B 2023 Phys.Fluids. 35

    [18]

    Yovanovich M M, Khan W A 2020 J.Thermophys.Heat.Trans. 34 792

    [19]

    Valougeorgis D 2007 Phys.Fluids. 19 091702

    [20]

    Barber R W, Emerson D R 2006 HTE. 27 3

    [21]

    Bykov N Y, Zakharov V V 2022 Phys.Fluids. 34 057106

    [22]

    Wang X, Li Y, Gao Y, Gao C, Fu W 2023 Aerospace. 10 126

    [23]

    Xu K, Huang J C 2010 J. Comput. Phys. 229 7747

    [24]

    Guo Z, Xu K, Wang R 2013 Phys. Rev. E. 88 033305.

    [25]

    Hong C, Yamada T, Asako Y, Faghri M 2012 Int.J.Heat.Mass. Transfer. 55 4397

    [26]

    Celata G P, Lorenzini M, Morini G L, Zummo G 2009 Int.J.Heat.Fluid.Flow. 30 814

    [27]

    Rehman D, Barattini D, Hong C, Morini G L 2021 Exp.Fluids. 62 1

    [28]

    Rehman D, Morini G L, Hong C 2019 Micromachines. 10 1

    [29]

    Hong C, Asako Y, Morini G L, Faghri M 2024Exp.Therm.Fluid.Sci. 155 111196

    [30]

    Brackbill T, Kandlikar S 2007 Proceedings of the International Conference on Nanochannels, Microchannels and Minichannels, June 18-20, Puebla, Mexico 4272 509

    [31]

    Eckhardt B, Schneider T M, Hof B, Westerweel J 2007 Annu.Rev.Fluid.Mech. 39 468

    [32]

    Morini G L, Lorenzini M, Salvigni S 2006 Exp.Therm.Fluid.Sci. 30 733

    [33]

    Du D, Li Z, Guo Z 2000 Sci.China.Technol.Sci. 43 171

    [34]

    Sonnad J R, Goudar C T 2006 J.Hydraul.Eng, 132 863

    [35]

    Zucrow M J, Hoffman J D (translated by Wang R Y) 1984 Gas Dynamics (Vol.1) (Beijing: National Defense Industry Press) (in Chinese) [左克罗, 霍夫曼著 (王汝涌译) 气体动力学. 上册. 北京:国防工业出版社]

    [36]

    Tang G H, Li Z, He Y L, Tao W Q 2007 Int.J.Heat.Mass.Transfer. 50 2282

    [37]

    Lorenzini M, Morini G L, Salvigni S 2010 Int.J.Therm.Sci. 49 248

    [38]

    Moody L F 1944 Transactions of the ASME. 66 671

    [39]

    Avci A, Karagoz I 2019 Eur.J.Mech.B.Fluids.78 182.

  • [1] 王震, 赵志航, 付洋洋. 基于统一流体模型的微放电数值仿真研究.  , doi: 10.7498/aps.73.20240392
    [2] 崔子纯, 杨莫涵, 阮晓鹏, 范晓丽, 周峰, 刘维民. 高通量计算二维材料界面摩擦.  , doi: 10.7498/aps.72.20221676
    [3] 娄月申, 郭文军. 贝叶斯深度神经网络对于核质量预测的研究.  , doi: 10.7498/aps.71.20212387
    [4] 唐富明, 刘凯, 杨溢, 屠倩, 王凤, 王哲, 廖青. 基于图形处理器加速数值求解三维含时薛定谔方程.  , doi: 10.7498/aps.69.20200700
    [5] 闫晨帅, 徐进良. 超临界压力CO2在水平圆管内流动传热数值分析.  , doi: 10.7498/aps.69.20191513
    [6] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟.  , doi: 10.7498/aps.68.20190495
    [7] 郑麟, 莫松平, 李玉秀, 陈颖, 徐进良. 薄层剪切二元颗粒分离过程动力学特性分析.  , doi: 10.7498/aps.68.20190322
    [8] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强. 颗粒滚动摩擦系数对堆积特性的影响.  , doi: 10.7498/aps.63.174501
    [9] 陈云祥, 陈科, 尤云祥, 胡天群. 层流圆管潜射流生成蘑菇形涡结构特性数值研究.  , doi: 10.7498/aps.62.114701
    [10] 韩亮, 宁涛, 刘德连, 何亮. 氩离子轰击对四面体非晶碳膜内应力和摩擦系数影响的研究.  , doi: 10.7498/aps.61.176801
    [11] 夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强. 氩气微腔放电中特性参数的数值模拟研究.  , doi: 10.7498/aps.60.015201
    [12] 龚中良, 黄平. 基于非连续能量耗散的滑动摩擦系数计算模型.  , doi: 10.7498/aps.60.024601
    [13] 韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清. 磁过滤器电流对非晶碳薄膜摩擦学特性影响的研究.  , doi: 10.7498/aps.60.046802
    [14] 韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清. 高能氮离子轰击对四面体非晶碳膜的表面改性和摩擦系数影响的研究.  , doi: 10.7498/aps.60.066804
    [15] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究.  , doi: 10.7498/aps.59.5635
    [16] 崔战友, 陈天宁, 许锐奇, 吴九汇. 二维开缝金属圆管带隙结构禁带特性中缝参数的研究.  , doi: 10.7498/aps.58.4752
    [17] 龚博致, 张秉坚. 水中自然超空泡机理及减阻效应的非平衡分子动力学研究.  , doi: 10.7498/aps.58.1504
    [18] 蒋继建, 李传安. Kerr黑洞的量子面积谱及微黑洞的最小质量.  , doi: 10.7498/aps.54.3958
    [19] 武宇. 处理偏心圆柱形气缝导热的一个微扰方法.  , doi: 10.7498/aps.20.137
    [20] 张守廉. 圆管中之激流.  , doi: 10.7498/aps.5.124
计量
  • 文章访问数:  101
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-27

/

返回文章
返回
Baidu
map