搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆偏振强激光场诱导分子电离过程中的缀饰态和非缀饰态

刘洁 郝小雷

引用本文:
Citation:

椭圆偏振强激光场诱导分子电离过程中的缀饰态和非缀饰态

刘洁, 郝小雷

Dressed-state and undressed-state during molecular ionization induced by elliptically polarized laser field

LIU Jie, HAO Xiaolei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 分子强场近似(SFA)理论虽然在描述强激光场中分子的超快动力学方面取得了巨大的成功, 但是理论本身存在关键的矛盾. 一方面SFA基本思想要求初态为无场下的系统本征态, 另一方面物理过程的空间平移不变性要求系统初态应当为激光场缀饰态, 这两个相互矛盾的要求分别对应非缀饰态和缀饰态两种形式的分子SFA理论, 两种理论的有效性和适用条件存在广泛的争议. 本文中, 我们对(椭)圆偏振激光场中N2和Ne2分子的电离过程进行了研究, 期望能对上述争议给出解答. 椭圆偏振光能有效抑制再散射过程及各种干涉效应的影响, 使得电离过程更加干净, 因此可以有效甄别缀饰态和非缀饰态的适用条件. 我们采用强场近似方法(SFA)及库仑修正强场近似方法(CCSFA)计算了缀饰态和非缀饰态下不同分子轨道对应的光电子动量分布, 并与已有的实验结果进行了对比. 我们发现, 对于Ne2这样核间距较大的分子, 必须采用缀饰态才能准确地描述其电离特征; 而对于N2这样核间距较小的分子, 缀饰态描述则不适用. 本文的结论为准确描述激光诱导分子超快过程及相应理论的进一步发展提供了参考.
    Despite the molecular strong-field approximation (SFA) theory has made remarkable achievements in describing the ultrafast dynamics of molecules in intense laser fields, there are basic inconsistencies in the theory itself. On the one hand, the basic principle of SFA requires that the initial state be an eigenstate of the system in the absence of the field, and on the other hand, the spatial translation invariance of the physical process requires that the initial state of the system be a laser-field-dressed state. These two conflicting requirements correspond to the two forms of molecular SFA theories, namely, the undressed state and the dressed state. The two theoretical validity and applicability conditions are widely disputed. In this paper, we investigate the ionization processes of N2 and Ne2 molecules in an elliptically polarized laser field and a circularly polarized laser field, aiming to solve the above-mentioned controversies. Elliptically polarized laser can efficiently suppress the re-scattering process and the influence of various interference effects, which makes the ionization process cleaner, and thus can effectively screen the applicable conditions for the dressed and undressed states. We calculate the photoelectron momentum distributions corresponding to different molecular orbitals in the dressed and undressed states by using the strong-field approximation (SFA) and the Coulomb-corrected strong-field approximation (CCSFA) and compare them with previous experimental results. For molecules with large nuclear spacing such as Ne2, we find that the dressed state is necessary to accurately characterise their ionization, however, for molecules with small nuclear spacing such as N2, the dressed state description is inapplicable. The conclusions of this work provide a reference for accurately describing laser-induced molecular ultrafast processes and further developing corresponding theories and molecular ultrafast imaging schemes.
  • 图 1  (a) 和 (b) 分别为Ne2的2p$ \sigma_g $和2p$ \sigma_u $轨道坐标空间波函数的二维分布. (a) 中的点A和点B分别表示两个原子中心的位置, 它们之间的距离标记为$ R_{0} $. 电子与原子中心A的相对位置矢量为$ {\boldsymbol{r}}_{A} $, 与原子中心B的相对位置矢量为$ {\boldsymbol{r}}_{B} $

    Fig. 1.  (a) and (b) represent two-dimensional distributions spatial wave functions of the 2p$ \sigma_g $ and 2p$ \sigma_u $ orbitals for Ne2 respectively. (a) shows the positions of the two atomic centres, A and B, with the distance between them marked as $ R_0 $. The electronic relative position vector to atomic centre A is denoted by $ {\boldsymbol{r}}_{A} $, and the relative position vector to atomic centre B is denoted by $ {\boldsymbol{r}}_{B} $

    图 2  用SFA方法计算的Ne2在圆偏振光下的对称轨道2p$ \sigma_g $ (第一行)和 反对称轨道2p$ \sigma_u $ (第二行) 的光电子动量分布(PMD), 其中包括了非缀饰态(a), (c), (e), (g)和缀饰态(b), (d), (f), (h). 计算中分子轴沿着z轴方向排列, Ne-Ne键长为5.86 a.u., 左侧一组图(a), (b), (e), (f)和右侧一组图(c), (d), (g), (h)的激光峰值光强分别为$ 1.8\times10^{14}\; {\mathrm{W/cm}}^{2} $和$ 7.3\times10^{14}\; {\mathrm{W/cm}}^{2} $, 波长均为780 nm

    Fig. 2.  Photoelectron momentum distributions (PMD) calculated by the SFA method for the symmetric orbitals 2p$ \sigma_g $ (the first row) and antisymmetric orbitals 2p$ \sigma_u $ (the second row) in circularly polarized light for Ne2, which includes both the dressing state (a), (c), (e), (g) and the undressing state (b), (d), (f), (h). The molecular axes are aligned along the z-axis, the Ne-Ne bond length is 5.86 a.u.. The left set of panels has the peak laser intensity is $ 1.8\times10^{14}\; {\mathrm{W/cm}}^{2} $, while the right set of panels is $ 7.3\times10^{14}\; {\mathrm{W/cm}}^{2} $, the wavelength of both is 780 nm.

    图 3  SFA方法中考虑不同项计算得到的Ne2在圆偏振光下对称性轨道2p$ \sigma_{\rm{g}} $ 的光电子动量分布. (a)公式(5)中不考虑$ V_{p_0} $时的PMD; (b)$ V_{p_0} $中不考虑分子干涉项时的PMD; (c)$ V_{p_0} $中只考虑非缀饰态干涉项时的PMD; (d)$ V_{p_0} $中只考虑缀饰态干涉项时的PMD. 激光峰值光强为$ 7.3\times10^{14} \;{\mathrm{W/cm}}^{2} $, 波长为780 nm. 具体细节请参考文中表述

    Fig. 3.  The PMD of the symmetry orbital 2p$ \sigma_{\rm{g}} $ of Ne2 in circularly polarized light calculated by considering different terms in the SFA method. (a) The PMD obtained when $ V_{p_0} $ is not considered in Eq. (5). (b) The PMD obtained when $ V_{p_0} $ is included but the molecular interference term is removed; (c) The PMD with only the undressed state interference term considered in $ V_{p_0} $; (d) The PMD with only the dressed state interference term considered in $ V_{p_0} $. The peak laser intensity is $ 7.3\times10^{14}\; {\mathrm{W/cm}}^{2} $, the wavelength is 780 nm. For details, please refer to the text.

    图 4  缀饰态下的Ne2对称2p$ \sigma_{\rm{g}} $ (a)和反对称2p$ \sigma_{\rm{u}} $(b)轨道的电离率随$ p_{z} $的分布, 即将图2(d)和(h)中分布的$ p_{x} $方向动量积分

    Fig. 4.  The distribution of the ionization rates with $ p_{z} $ for the symmetric 2p$ \sigma_g $ (a) and antisymmetric 2p$ \sigma_u $ (b) orbitals of Ne2 in the dressed state, i.e., integrating the x-direction momentum distributions in Figs. 2(d) and (h).

    图 5  SFA方法计算的N2在椭圆偏振光下HOMO (a), (b), (c), (d) 和HOMO-1 (e), (f), (g), (h) 的光电子动量分布, 其中(a), (c), (e), (g)是非缀饰态的情况, (b), (d), (f), (h)是缀饰态的情况. 左侧一组图和右侧一组图的准直角分别为$ 0^\circ $和$ 45^\circ $. 分子轴沿着z轴方向排列, 准直角被定义为分子轴与激光场长轴方向之间的夹角. N-N键长为2.073 a.u., 激光场峰值光强是$ 1.8\times $$ 10^{14}\;{\mathrm{ W/cm}}^{2} $, 波长是800 nm, 椭偏率是0.82

    Fig. 5.  The PMD of N2 in elliptical laser fields for HOMO (a), (b), (c), (d) and HOMO-1 (e), (f), (g), (h) calculated by the SFA method, which (a), (c), (e), (g) are the case of the undressed state, and (b), (d), (f), (h) are the cases of the dressed state. The left set of panels and the right set of panels are aligned at angles $ 0^\circ $ and $ 45^\circ $, respectively. The molecular axes are aligned along the z-axis direction, the alignment angle is defined as the angle between the molecular axis and the main axis of the laser field. The N-N bond length is 2.073 a.u., the peak laser intensity is $ 1.8 \times10^{14}\;{\mathrm{ W/cm}}^{2} $, the wavelength is 800 nm, and the ellipticity is 0.82.

    图 6  库仑修正强场近似(CCSFA)方法计算的N2和Ne2在(椭)圆偏振光 下不同轨道的光电子动量分布. (a)和(c)分别是N2在非缀饰态下的HOMO和HOMO-1的动量分布, 激光峰值光强为$ 1.8\times10^{14}\;{\rm{W}}/{\rm{cm}}^{2} $, 波长为800 nm, 椭偏率为0.82. (b)和(d)分别是Ne2在缀饰态下的对称性$ \sigma_{\rm{g}} $ 轨道和反对称性$ \sigma_{\rm{u}} $轨道的动量分布, 激光峰值光强为$ 7.3\times10^{14}\;{\rm{W}}/{\rm{cm}}^{2} $, 波长为780 nm, 椭偏率为1. (e)和(f)中分别展示了将(b) 和(d)中的分布旋转一定角度并将$ p_{x} $方向动量积分后的结果. 具体细节参考文章表述

    Fig. 6.  Photoelectron momentum distributions of different orbitals in (elliptical) circular polarized light for N2 and Ne2 calculated by the CCSFA. (a) and (c) are the momentum distributions of HOMO and HOMO-1 for N2 in the undressing state, the peak laser intensity is $ 1.8 \times10^{14}\; {\rm{W}}/{\rm{cm}}^{2} $, the wavelength is 800 nm, and the ellipticity is 0.82. (b) and (d) are the momentum distributions of symmetric $ \sigma_{\rm{g}} $ orbital and antisymmetric $ \sigma_{\rm{u}} $ orbital for Ne2 in the dressing state, respectively, the peak laser intensity is $ 7.3 \times10^{14}\; {\rm{W}}/{\rm{cm}}^{2} $, the wavelength is 780 nm, and the ellipticity is 1. (e) and (f) show the results after rotating the distributions in (b) and (d) by a given angle and integrating the momentum in the $ p_{x} $ direction, respectively. See the text for more details.

    Baidu
  • [1]

    Rost J M, Saalmann U 2019 Nat. Photon. 13 439Google Scholar

    [2]

    Blaga C I, Xu J L, DiChiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012 Nature 483 194Google Scholar

    [3]

    Niikura H, Légaré F, Hasbani R, Bandrauk A D, Ivanov M Y, Villeneuve D M, Corkum P B 2002 Nature 417 917Google Scholar

    [4]

    Niikura H, Légaré F, Hasbani R, Ivanov M Y, Villeneuve D M, Corkum P B 2003 Nature 421 826Google Scholar

    [5]

    Uiberacker M, Uphues T, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 446 627Google Scholar

    [6]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4 565Google Scholar

    [7]

    Faisal F H 1973 J. Phys. B: Atom. Mol. Phys. 6 L89Google Scholar

    [8]

    Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar

    [9]

    Lewenstein M, Balcou P, Ivanov M Y, L'huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [10]

    Muth-Böhm J, Becker A, Faisal F 2000 Phys. Rev. Lett. 85 2280Google Scholar

    [11]

    Kjeldsen T K, Madsen L B 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2033Google Scholar

    [12]

    Milošević D, Paulus G, Bauer D, Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203Google Scholar

    [13]

    刘希望, 张宏丹, 贲帅, 杨士栋, 任鑫, 宋晓红, 杨玮枫 2023 72 198701Google Scholar

    Liu X W, Zhang H D, Ben S, Yang S D, Ren X, Song X H, Yang W F 2023 Acta. Phys. Sin. 72 198701Google Scholar

    [14]

    Xu J Y, Guo L, Qi X, Lu R H, Zhang M, Zhang J T, Chen J 2024 Chin. Phys. B 33 093301Google Scholar

    [15]

    Yan T M, Popruzhenko S, Vrakking M, Bauer D 2010 Phys. Rev. Lett. 105 253002Google Scholar

    [16]

    Wang C, Okunishi M, Hao X, Ito Y, Chen J, Yang Y, Lucchese R, Zhang M, Yan B, Li W, Ding D, Ue da, K 2016 Phys. Rev. A 93 043422Google Scholar

    [17]

    Yang Y Z, Ren H, Zhang M, Zhou S P, Mu X X, Li X K, Wang Z Z, Deng K, Li M X, Ma P, Li Z, Hao X L, Li W D, Chen J, Wang C C, Ding D J 2023 Nat. Commun. 14 4951Google Scholar

    [18]

    Milošević D 2006 Phys. Rev. A 74 063404Google Scholar

    [19]

    Becker W, Chen J, Chen S G, Milošević D 2007 Phys. Rev. A 76 033403Google Scholar

    [20]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2012 Nat. Phys. 8 76Google Scholar

    [21]

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O, Dudovich N 2012 Nature 485 343Google Scholar

    [22]

    Yu M, Liu K, Li M, Yan J Q, Cao C P, Tan J, Liang J T, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M, Lu P X 2022 Light: Sci. Appl. 11 215Google Scholar

    [23]

    Wu J, Magrakvelidze M, Schmidt L P H, Kunitski M, Pfeifer T, Schöffler M, Pitzer M, Richter M, Voss S, Sann H, Kim H, Lower J, Jahnke T, Czasch A, Thumm U, Dörner R 2013 Nat. Commun. 4 2177Google Scholar

    [24]

    Serov V V, Bray A W, Kheifets A S 2019 Phys. Rev. A 99 063428Google Scholar

    [25]

    Quan W, Serov V V, Wei M Z, Zhao M, Zhou Y, Wang Y L, Lai X Y, Kheifets A S, Liu X J 2019 Phys. Rev. Lett. 123 223204Google Scholar

    [26]

    Khan A, Trabert D, Eckart S, Kunitski M, Jahnke T, Dörner R 2020 Phys. Rev. A 101 023409Google Scholar

    [27]

    Korneev P A, Popruzhenko S, Goreslavski S, Yan T M, Bauer D, Becker W, Kübel M, Kling M F, Rödel C, Wünsche M, Paulus G G 2012 Phys. Rev. Lett. 108 223601Google Scholar

    [28]

    Pruzhenko S V, Korneev P A, Goreslavski S, Becker W 2002 Phys. Rev. Lett. 89 023001Google Scholar

    [29]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [30]

    Maxwell A S, Faria C F d M 2016 Phys. Rev. Lett. 116 143001Google Scholar

    [31]

    Quan W, Hao X L, Wang Y L, Chen Y J, Yu S G, Xu S P, Xiao Z L, Sun R P, Lai X Y, Hu S L, Liu M Q, Shu Z, Wang X D, Li W D, Becker W, Liu X J, Chen J 2017 Phys. Rev. A 96 032511Google Scholar

    [32]

    Busuladžić M, Gazibegović-Busuladžić A, Miložević D, Becker W 2008 Phys. Rev. A 78 033412Google Scholar

    [33]

    Busuladžić M, Milošević D 2010 Phys. Rev. A 82 015401Google Scholar

    [34]

    Lewenstein M, Kulander K, Schafer K, Bucksbaum P 1995 Phys. Rev. A 51 1495Google Scholar

    [35]

    de Morisson Faria C F, Schomerus H, Becker W 2002 Phys. Rev. A 66 043413Google Scholar

    [36]

    Usachenko V I, Chu S I 2005 Phys. Rev. A 71 063410Google Scholar

    [37]

    Kunitski M, Eicke N, Huber P, Köhler J, Zeller S, Voigtsberger J, Schlott N, Henrichs K, Sann H, Trinter F, Schmidt L P H, Kalinin A, Schöffler M S, Jahnke T, Lein M, Dörner R 2019 Nat. Commun. 10 1Google Scholar

    [38]

    Guo Z N, Liu Y Q 2020 J. Phys. B: At. Mol. Opt. Phys. 53 065004Google Scholar

    [39]

    Yan J Q, Xie W H, Li M, Liu K, Luo S Q, Cao C P, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M, Lu P X 2020 Phys. Rev. A 102 013117Google Scholar

  • [1] 段昊男, 姬中华, 刘伟新, 苏殿强, 李经宽, 赵延霆. 基于射频场缀饰的直流电场Floquet-电磁诱导透明光谱特性研究.  , doi: 10.7498/aps.74.20250052
    [2] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离.  , doi: 10.7498/aps.73.20231583
    [3] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应.  , doi: 10.7498/aps.71.20211905
    [4] 陶建飞, 夏勤智, 廖临谷, 刘杰, 刘小井. 强激光场原子电离光电子轨迹干涉全息理论及应用.  , doi: 10.7498/aps.71.20221296
    [5] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收.  , doi: 10.7498/aps.71.20220950
    [6] 王丹, 郭瑞翔, 戴玉鹏, 周海涛. 基于简并四波混频的双信道双频段增益谱.  , doi: 10.7498/aps.70.20201778
    [7] 马堃, 颉录有, 董晨钟. Ar原子序列双光双电离产生光电子角分布的理论计算.  , doi: 10.7498/aps.69.20191814
    [8] 孟腾飞, 田剑锋, 周瑶瑶. 准Λ型四能级系统选择反射光谱.  , doi: 10.7498/aps.69.20191099
    [9] 张蕾, 戈燕, 张向阳. 基于量子相干控制吸收的准Λ型四能级原子局域化研究.  , doi: 10.7498/aps.64.134204
    [10] 刘玉柱, Gerber Thomas, Knopp Gregor. 利用强场多光子电离技术实现对多原子分子离子振动量子态的光学操控.  , doi: 10.7498/aps.63.244208
    [11] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布.  , doi: 10.7498/aps.63.178201
    [12] 王志萍, 朱云, 吴鑫, 吴亚敏. CO分子在线性极化飞秒激光场中的TDDFT研究.  , doi: 10.7498/aps.62.233102
    [13] 王志萍, 陈健, 吴寿煜, 吴亚敏. 碳分子线C5在激光场中的含时密度泛函理论研究.  , doi: 10.7498/aps.62.123302
    [14] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖.  , doi: 10.7498/aps.61.233202
    [15] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离.  , doi: 10.7498/aps.61.203201
    [16] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频.  , doi: 10.7498/aps.61.114213
    [17] 王骐, 陈建新, 夏元钦, 陈德应. 基于OFI椭圆偏振光场等离子体中电离电子能量分布的研究.  , doi: 10.7498/aps.51.1035
    [18] 屈卫星, 徐至展. 二阶离化对缀饰态稳定性的影响.  , doi: 10.7498/aps.42.373
    [19] 冯健, 高学彦. 强场自电离光电子谱中峰开关效应的破坏.  , doi: 10.7498/aps.42.886
    [20] 赵力耕, 徐至展. 激光诱导自电离及其光电子能谱.  , doi: 10.7498/aps.36.467
计量
  • 文章访问数:  220
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 修回日期:  2025-02-24
  • 上网日期:  2025-03-20

/

返回文章
返回
Baidu
map