搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆偏振强激光场诱导分子电离过程中的缀饰态和非缀饰态

刘洁 郝小雷

引用本文:
Citation:

椭圆偏振强激光场诱导分子电离过程中的缀饰态和非缀饰态

刘洁, 郝小雷

Dressed-state and dressed-state in the molecular ionization induced by elliptically polarized laser field

LIU Jie, HAO Xiaolei
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 分子强场近似(SFA)理论虽然在描述强激光场中分子的超快动力学方面取得了巨大的成功,但是理论本身存在关键的矛盾。一方面SFA基本思想要求初态为无场下的系统本征态,另一方面物理过程的空间平移不变性要求系统初态应当为激光场缀饰态,这两个相互矛盾的要求分别对应非缀饰态和缀饰态两种形式的分子SFA理论,两种理论的有效性和适用条件存在广泛的争议。本文中,我们对(椭)圆偏振激光场中N$_{2}$和Ne$_{2}$分子的电离过程进行了研究,期望能对上述争议给出解答。椭圆偏振光能有效抑制再散射过程及各种干涉效应的影响,使得电离过程更加干净,因此可以有效甄别缀饰态和非缀饰态的适用条件。我们采用强场近似方法(SFA)及库仑修正强场近似方法(CCSFA)计算了缀饰态和非缀饰态下不同分子轨道对应的光电子动量分布,并与已有的实验结果进行了对比。我们发现,对于Ne$_{2}$这样核间距较大的分子,必须采用缀饰态才能准确地描述其电离特征;而对于N$_{2}$这样核间距较小的分子,缀饰态描述则不适用。本文的结论为准确描述激光诱导分子超快过程及相应理论的进一步发展提供了参考。
    Although the molecular strong-field approximation (SFA) theory has achieved significant achievements in characterising the ultrafast dynamics of molecules in strong laser fields, there are fundamental contradictions in the system itself. On the one hand, the basic principle of SFA requires that the initial state be an eigenstate of the system in the absence of the field, and on the other hand, the spatial translation invariance of the physical process requires that the initial state of the system should be a laser-field-dressed state, and these two contradictory requirements correspond to the two forms of molecular SFA theories, namely, the undressed and the dressed states, respectively, and the two theoretical validity and applicability conditions of these are widely disputed. In this paper we investigate the ionization processes of N2 and Ne2 molecules in (elliptically) circularly polarized laser fields, with the expectation of providing an answer to the above controversies. Elliptically polarized laser can efficiently suppress the re-scattering process and the influence of various interference effects, which makes the ionization process cleaner, and thus can effectively screen the applicable conditions for the dressed and undressed states. We have calculated the photoelectron momentum distributions corresponding to different molecular orbitals in the dressed and undressed states by using the strong-field approximation (SFA) and the Coulomb-corrected strong-field approximation (CCSFA) and compared them with the previous experimental results. For molecules with large nuclear spacing such as Ne$_{2}$, we find that the dressed state is necessary to accurately characterise their ionization, whereas for molecules with small nuclear spacing such as N$_{2}$, the dressed state description is not applicable. The conclusions of this paper provide a reference for the accurate description of laser-induced molecular ultrafast processes and the further development of the corresponding theories, and provides a reference for the further development of molecular ultrafast imaging schemes.
  • [1]

    Rost J M, Saalmann U 2019 Nat. Photon. 13439

    [2]

    Blaga C I, Xu J L, DiChiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012 Nature 483194

    [3]

    Niikura H, Légaré F, Hasbani R, Bandrauk A D, Ivanov M Y, Villeneuve D M, Corkum P B 2002 Nature 417917

    [4]

    Niikura H, Légaré F, Hasbani R, Ivanov M Y, Villeneuve D M, Corkum P B 2003 Nature 421826

    [5]

    Uiberacker M, Uphues T, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 446627

    [6]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4565

    [7]

    Faisal F H 1973 J. Phys. B: Atom. Mol. Phys. 6 L89

    [8]

    Reiss H R 1980 Phys. Rev. A 221786

    [9]

    Lewenstein M, Balcou P, Ivanov M Y, L’huillier A, Corkum P B 1994 Phys. Rev. A 492117

    [10]

    Muth-Böhm J, Becker A, Faisal F 2000 Phys. Rev. Lett. 852280

    [11]

    Kjeldsen T K, Madsen L B 2004 J. Phys. B: At. Mol. Opt. Phys. 372033

    [12]

    Milošević D, Paulus G, Bauer D, Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203

    [13]

    Liu X W, Zhang H D, Ben S, Yang S D, Ren X, Song X H, Yang W F 2023 Acta. Phys. Sin. 72198701(in Chinese) [刘希望,张宏丹,贲帅,杨士栋,任鑫,宋晓红,杨玮枫2023 72198701]

    [14]

    Xu J Y, Guo L, Qi X, Lu R H, Zhang M, Zhang J T, Chen J 2024 Chin. Phys. B 33093301

    [15]

    Yan T M, Popruzhenko S, Vrakking M, Bauer D 2010 Phys. Rev. Lett. 105253002

    [16]

    Wang C, Okunishi M, Hao X, Ito Y, Chen J, Yang Y, Lucchese R, Zhang M, Yan B, Li W, Ding D, Ueda,K 2016 Phys. Rev. A 93043422

    [17]

    Yang Y Z, Ren H, Zhang M, Zhou S P, Mu X X, Li X K, Wang Z Z, Deng K, Li M X, Ma P, Li Z, Hao X L, Li W D, Chen J, Wang C C, Ding D J 2023 Nat. Commun. 144951

    [18]

    Milošević D 2006 Phys. Rev. A 74063404

    [19]

    Becker W, Chen J, Chen S G, Milošević D 2007 Phys. Rev. A 76033403

    [20]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2012 Nat. Phys. 876

    [21]

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O, Dudovich N 2012 Nature 485343

    [22]

    Yu M, Liu K, Li M, Yan J Q, Cao C P, Tan J, Liang J T, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M, Lu P X 2022 Light: Sci. Appl. 11215

    [23]

    Wu J, Magrakvelidze M, Schmidt L P H, Kunitski M, Pfeifer T, Schöffler M, Pitzer M, Richter M, Voss S, Sann H, Kim H, Lower J, Jahnke T, Czasch A, Thumm U, Dörner R 2013 Nat. Commun. 42177

    [24]

    Serov V V, Bray A W, Kheifets A S 2019 Phys. Rev. A 99063428

    [25]

    Quan W, Serov V V, Wei M Z, Zhao M, Zhou Y, Wang Y L, Lai X Y, Kheifets A S, Liu X J 2019 Phys. Rev. Lett. 123223204

    [26]

    Khan A, Trabert D, Eckart S, Kunitski M, Jahnke T, Dörner R 2020 Phys. Rev.

    [27]

    Korneev P A, Popruzhenko S, Goreslavski S, Yan T M, Bauer D, Becker W, Kübel M, Kling M F, Rödel C, Wünsche M, Paulus G G 2012 Phys. Rev. Lett. 108223601

    [28]

    Pruzhenko S V, Korneev P A, Goreslavski S, Becker W 2002 Phys. Rev. Lett. 89023001

    [29]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112073002

    [30]

    Maxwell A S, Faria C Fd M 2016 Phys. Rev. Lett. 116143001

    [31]

    Quan W, Hao X L, Wang Y L, Chen Y J, Yu S G, Xu S P, Xiao Z L, Sun R P, Lai X Y, Hu S L, Liu M Q, Shu Z, Wang X D, Li W D, Becker W, Liu X J, Chen J 2017 Phys. Rev. A 96032511

    [32]

    Busuladžić M, Gazibegović-Busuladžić A, Miložević D, Becker W 2008 Phys. Rev. A 78033412

    [33]

    Busuladžić M, Milošević D 2010 Phys. Rev. A 82015401

    [34]

    Lewenstein M, Kulander K, Schafer K, Bucksbaum P 1995 Phys. Rev. A 511495

    [35]

    de Morisson Faria C F, Schomerus H, Becker W 2002 Phys. Rev. A 66043413

    [36]

    Usachenko V I, Chu S I 2005 Phys. Rev. A 71063410

    [37]

    Kunitski M, Eicke N, Huber P, Köhler J, Zeller S, Voigtsberger J, Schlott N, Henrichs K, Sann H, Trinter F, Schmidt L P H, Kalinin A, Schöffler M S, Jahnke T, Lein M, Dörner R 2019 Nat. Commun. 101

    [38]

    Guo Z N, Liu Y Q 2020 J. Phys. B: At. Mol. Opt. Phys. 53065004

    [39]

    Yan J Q, Xie W H, Li M, Liu K, Luo S Q, Cao C P, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M, Lu P X 2020 Phys. Rev. A 102013117

  • [1] 段昊男, 姬中华, 刘伟新, 苏殿强, 李经宽, 赵延霆. 基于射频场缀饰的直流电场Floquet-EIT光谱特性研究.  , doi: 10.7498/aps.74.20250052
    [2] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离.  , doi: 10.7498/aps.73.20231583
    [3] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应.  , doi: 10.7498/aps.71.20211905
    [4] 陶建飞, 夏勤智, 廖临谷, 刘杰, 刘小井. 强激光场原子电离光电子轨迹干涉全息理论及应用.  , doi: 10.7498/aps.71.20221296
    [5] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收.  , doi: 10.7498/aps.71.20220950
    [6] 王丹, 郭瑞翔, 戴玉鹏, 周海涛. 基于简并四波混频的双信道双频段增益谱.  , doi: 10.7498/aps.70.20201778
    [7] 马堃, 颉录有, 董晨钟. Ar原子序列双光双电离产生光电子角分布的理论计算.  , doi: 10.7498/aps.69.20191814
    [8] 孟腾飞, 田剑锋, 周瑶瑶. 准Λ型四能级系统选择反射光谱.  , doi: 10.7498/aps.69.20191099
    [9] 张蕾, 戈燕, 张向阳. 基于量子相干控制吸收的准Λ型四能级原子局域化研究.  , doi: 10.7498/aps.64.134204
    [10] 刘玉柱, Gerber Thomas, Knopp Gregor. 利用强场多光子电离技术实现对多原子分子离子振动量子态的光学操控.  , doi: 10.7498/aps.63.244208
    [11] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布.  , doi: 10.7498/aps.63.178201
    [12] 王志萍, 朱云, 吴鑫, 吴亚敏. CO分子在线性极化飞秒激光场中的TDDFT研究.  , doi: 10.7498/aps.62.233102
    [13] 王志萍, 陈健, 吴寿煜, 吴亚敏. 碳分子线C5在激光场中的含时密度泛函理论研究.  , doi: 10.7498/aps.62.123302
    [14] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖.  , doi: 10.7498/aps.61.233202
    [15] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离.  , doi: 10.7498/aps.61.203201
    [16] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频.  , doi: 10.7498/aps.61.114213
    [17] 王骐, 陈建新, 夏元钦, 陈德应. 基于OFI椭圆偏振光场等离子体中电离电子能量分布的研究.  , doi: 10.7498/aps.51.1035
    [18] 屈卫星, 徐至展. 二阶离化对缀饰态稳定性的影响.  , doi: 10.7498/aps.42.373
    [19] 冯健, 高学彦. 强场自电离光电子谱中峰开关效应的破坏.  , doi: 10.7498/aps.42.886
    [20] 赵力耕, 徐至展. 激光诱导自电离及其光电子能谱.  , doi: 10.7498/aps.36.467
计量
  • 文章访问数:  97
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-20

/

返回文章
返回
Baidu
map