搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分形子模型中的彩虹伤痕态

谢岩骏 戴汉宁

引用本文:
Citation:

分形子模型中的彩虹伤痕态

谢岩骏, 戴汉宁

Rainbow scar states in the fracton model

XIE Yanjun, DAI Hanning
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 量子多体伤痕态的弱遍历性动力学与本征态热化假说相悖,在淬火动力学中局域可观测量出现周期振荡.这种现象通常与伤痕态二分纠缠熵的亚体积定律有关.纠缠熵呈现出异常值,与能谱主体相分离.本文使用精确对角化的方法数值模拟了准一维分形子模型中的彩虹伤痕态,该态由一系列远距离的四体纠缠组成,依次分布于中心对称的四个格点,其二分纠缠熵遵循体积定律.我们发现该态在未与能谱主体分离的情况下,表现出了弱热化现象.当引入横场破坏模型的子系统对称性后,弱热化特性随即消失.进一步地,本文在分形子模型中提出了彩虹伤痕态的制备方案,通过调制局域的四体交换相互作用和 $\hat{\sigma}^z$ 门,从尼尔态出发,实现了高保真度的态制备.分析相互作用的强度噪声影响,该方案表现出一定的鲁棒性.本文证明了分形子模型中彩虹伤痕态的存在,为非平衡量子系统中弱热化的研究提供了新的途径.
    The eigenstate thermalization hypothesis describes the nonequilibrium dynamics of an isolated quantum many-body system, during which a pure state becomes locally indistinguishable from a thermal ensemble. The discovery of quantum many-body scars (QMBS) shows a weak violation of ergodicity, characterized by coherent oscillations of local observables after a quantum quench. These states consist of the tower of regular eigenstates which are equally spaced in the energy spectrum. While subextensive entanglement scaling is a primary feature widely used to detect QMBS numerically as entropy outliers, rainbow scars exhibit a volume-law scaling, which may challenge this property. In this work, we construct the rainbow scar state in the fracton model on a two-leg ladder. The fracton model is composed of four-body ring-exchange interactions and hosts global time-reversal symmetry $\hat{\mathcal{T}}=\mathcal{K} i \hat{\sigma}^y$ and subsystem $\mathrm{U}(1)=\prod_{j \in\{\mathrm{row} / \mathrm{col}\}} e^{i \frac{\theta}{2} \hat{\sigma}_j^z}$ symmetry. The subsystem symmetry constrains particle mobility, hindering the establishment of thermal equilibrium and leading to a series of anomalous dynamical processes. We construct the rainbow scar state with distributed four-body GHZ states whose entanglement entropy follows the volume law. By calculating the eigenstates of the fracton model with exact diagonalization, the rainbow scar state consists of a series of degenerate high-energy excited states, which are not clearly outliers among other eigenstates in the spectrum. Introducing the on-site interaction to break the time-reversal symmetry, the degeneracy of rainbow scar states is lifted into an equally spaced tower of states, ensuring the revivals of the initial states. However, when subsystem U(1) symmetry is broken, the scar state is quickly thermalized, indicating that weak thermalization may be protected by subsystem U(1) symmetry. Additionally, we propose a scheme for preparing the rainbow scar state by modulating the strength of the four-body interactions and $\hat{\sigma}^z$ operations, analyzing the impact of noise on the strength of the four-body interactions. This work provides new insights for the study of weak thermalization processes in fracton model and helps to understand the nature of ETH-violation in different nonequilibrium systems.
  • [1]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M, 2011 Rev. Mod. Phys. 83, 863

    [2]

    Dmitriev I A, Mirlin A D, Polyakov D G, Zudov M A, 2012 Rev. Mod. Phys. 84, 1709

    [3]

    Pekola J P, Karimi B, 2021 Rev. Mod. Phys. 93, 041001

    [4]

    Deutsch J M, 1991 Phys. Rev. A 43, 2046

    [5]

    Srednicki M, 1994 Phys. Rev. E 50, 888

    [6]

    Rigol M, Dunjko V, Yurovsky V, Olshanii M, 2007 Phys. Rev. Lett. 98, 050405

    [7]

    Calabrese P, Essler F H L, Fagotti M, 2011 Phys. Rev. Lett. 106, 227203

    [8]

    Nandkishore R, Huse D A, 2015 Annu. Rev. Condens. Matter Phys. 6, 15

    [9]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I, 2015 Science 349, 842

    [10]

    Moudgalya S, Rachel S, Bernevig B A, Regnault N, 2018 Phys. Rev. B 98, 235155

    [11]

    Choi S, Turner C J, Pichler H, Ho W W, Michailidis A A, Papic Z, Serbyn M, Lukin M D, Abanin D A, 2019 Phys. Rev. Lett. 122, 220603

    [12]

    Schecter M, Iadecola T, 2019 Phys. Rev. Lett. 123, 147201

    [13]

    Shiraishi N, Mori T, 2017 Phys. Rev. Lett. 119, 030601

    [14]

    Lin C J, Motrunich O I, 2019 Phys. Rev. Lett. 122, 173401

    [15]

    Ok S, Choo K, Mudry C, Castelnovo C, Chamon C, Neupert T, 2019 Phys. Rev. Res. 1, 033144

    [16]

    Langlett C M, Yang Z C, Wildeboer J, Gorshkov A V, Iadecola T, Xu S, 2022 Phys. Rev. B 105, L060301

    [17]

    Wildeboer J, Langlett C M, Yang Z C, Gorshkov A V, Iadecola T, Xu S, 2022 Phys.Rev. B 106, 205142

    [18]

    Iversen M, Bardarson J H, Nielsen E B, 2024 Phys. Rev. A 109, 023310

    [19]

    Ramírez G, Rodríguez-Laguna J, Sierra G, 2015 J. Stat. Mech.: Theory Exp. P06002.

    [20]

    Ramírez G, Rodríguez-Laguna J, Sierra G, 2014 J. Stat. Mech.: Theory Exp. P10004

    [21]

    Dutta S, Kuhr S, Cooper N R, 2024 Phys. Rev. Research 6, L012039

    [22]

    Byles L, Sierra G, Pachos J K, 2024 New J. Phys. 26, 013055

    [23]

    Serbyn M, Abanin D A, Papić Z, 2021 Nat. Phys. 17, 675

    [24]

    Moudgalya S, Bernevig B A, Regnault N, 2022 Rep. Prog. Phys. 85, 086501

    [25]

    Srivatsa N S, Yarloo H, Moessner R, Nielsen E B, 2023 Phys.Rev. B 108, L100202

    [26]

    Haah J, 2011 Phys. Rev. A 83, 042330

    [27]

    Vijay S, Haah J, Fu L, 2016 Phys. Rev. B 94, 235157

    [28]

    Pretko M, Radzihovsky L, 2018 Phys. Rev. Lett. 120, 195301

    [29]

    Gromov A, Radzihovsky L, 2024 Rev. Mod. Phys. 96, 011001

    [30]

    Du Y H, Mehta U, Nguyen D, Son D T, 2022 SciPost physics 12, 050

    [31]

    Prem A, Huang S J, Song H, Hermele H, 2019 Phys. Rev. X 9, 021010

    [32]

    Benedetti V, Bueno P, Magan J M, 2023 Phys. Rev. Lett. 131, 111603

    [33]

    Prem A, Haah J, Nandkishore R, 2017 Phys. Rev. B 95, 155133

    [34]

    Pretko M, 2017 Phys. Rev. B 96, 115102

    [35]

    Pai S, Pretko M, 2019 Phys. Rev. Lett. 123, 136401

    [36]

    Pretko M, Chen X, You Y, 2020 Int. J. Mod. Phys. A 35, 2030003

    [37]

    Moudgalya S, Bernevig B A, Regnault N, 2022 Reports on Progress in Physics 85, 086501

    [38]

    Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F, 2020 Phys. Rev. X 10, 011047

    [39]

    Scherg S, Kohlert T, Sala P, Pollmann F, Madhusudhana H B, Bloch I, Aidelsburger M 2021 Nat Commun 12, 4490

    [40]

    Kohlert T, Scherg S, Sala P, Pollmann F, Madhusudhana H B, Bloch I, Aidelsburger M, 2023 Phys. Rev. Lett. 130, 010201

    [41]

    Adler D, Wei D, Will M, Srakaew K,Agrawal S, Weckesser P,Moessner R, Pollmann F, Bloch I, Aidelsburger M 2024 Nature 636, 80–85

    [42]

    Imai S, Tsuji N, 2025 Phys. Rev. Research 7, 013064

    [43]

    Weinberg P, Bukov M, 2019 SciPost Phys. 7, 020

    [44]

    Aasen D, Bulmash D, Prem A, Slagle K, Williamson D J, 2020 Phys. Rev. Research 2, 043165

    [45]

    You Y Z, Burnell F J, Hughes T L, 2021 Phys. Rev. B 103, 245128

    [46]

    Paredes B, Bloch I, 2008 Phys. Rev. A 77, 023603

    [47]

    Dai H N, Yang B, Reingruber A, Sun H, Xu X F, Chen Y A, Yuan Z S, Pan J W, 2017 Nat. Phys 13, 1195–1200

    [48]

    Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese U J, Zoller P, 2014 Ann. Phys. 351, 634

    [49]

    Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F, 2020 Phys. Rev. B 101, 125126

    [50]

    Khudorozhkov A, Tiwari A, Chamon C, Neupert3 T, 2022 SciPost Phys. 13, 098

    [51]

    O’Dea N, Burnell F, Chandran A, Khemani V, 2020 Phys. Rev. Research 2, 043305

    [52]

    Ren J, Liang C, Fang C, 2021 Phys. Rev. Lett. 126, 120604

    [53]

    Zhao H Z, Smith A, Mintert F, Knolle J, 2021 Phys. Rev. Lett. 127, 150601

    [54]

    Ho W W, Choi S Pichler H, Lukin M D, 2019 Phys. Rev. Lett. 122, 040603

    [55]

    Mondragon-Shem I, Vavilov M G, Martin I, 2021 PRX Quantum 2, 030349

    [56]

    Barmettler P, Rey A M, Demler E, Lukin M D, Bloch I, Gritsev V, 2008 Phys. Rev. A 78, 012330

    [57]

    Alkurtass B, Banchi L, Bose S, 2014 Phys. Rev. A 90, 042304

    [58]

    Xie YJ et al., (in preparation)

    [59]

    Glaser S J, Boscain U, Calarco T, Koch C P, Köckenberger W, Kosloff R, Kuprov I, Luy B, Schirmer S, Schulte-Herbrüggen T, Sugny D, Wilhelm F K, 2015 Eur. Phys. J. D 69, 279

    [60]

    Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L, 2019 Rev. Mod. Phys. 91, 045002

    [61]

    Buijsman W, 2022 Phys. Rev. B 106, 045104

    [62]

    Dong Y, Zhang S Y, Deng D L, 2023 Phys. Rev. B 108, 195133

    [63]

    Schuster T, Kobrin B, Gao P, Cong I, Khabiboulline E T, Linke N M, Lukin M D, Monroe C, Yoshida B, Yao N Y, 2022 Phys. Rev. X 12, 031013

    [64]

    Agarwal L, Langlett C M, and Xu S, 2023 Phys. Rev. Lett. 130, 020801

  • [1] 张正源, 张天乙, 刘宗凯, 丁冬生, 史保森. 里德堡原子多体相互作用的研究进展.  , doi: 10.7498/aps.69.20200649
    [2] 叶世强, 陈小余. 基于量子相干性的四体贝尔不等式构建.  , doi: 10.7498/aps.66.200301
    [3] 郗玉兴, 单传家, 黄燕霞. 带有三体相互作用的XXZ自旋链模型的隐形传态.  , doi: 10.7498/aps.63.110305
    [4] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应.  , doi: 10.7498/aps.58.1833
    [5] 姜礼华, 刘福生, 田春玲. LiH晶体中离子间多体相互作用与高压下状态方程研究.  , doi: 10.7498/aps.57.4412
    [6] 刘占军, 朱少平, 曹莉华, 郑春阳. 利用一维Vlasov和Maxwell方程模拟激光等离子体相互作用.  , doi: 10.7498/aps.56.7084
    [7] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响.  , doi: 10.7498/aps.55.304
    [8] 刘海莲, 王治国, 杨成全, 石云龙. 链间超交换相互作用下spin-Peierls梯子模型的基态行为.  , doi: 10.7498/aps.55.3688
    [9] 田春玲, 刘福生, 蔡灵仓, 经福谦. 多体相互作用对高压固氦状态方程的影响.  , doi: 10.7498/aps.55.764
    [10] 张 翼, 李玉同, 张 杰, 陈正林, R. Kodama. 超强激光与等离子体相互作用产生中子的计算.  , doi: 10.7498/aps.54.4799
    [11] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究.  , doi: 10.7498/aps.54.197
    [12] 田春玲, 刘福生, 蔡灵仓, 经福谦. 四体相互作用对固氦压缩特性的贡献.  , doi: 10.7498/aps.52.1218
    [13] 林秀, 李洪才. 利用V形三能级原子与光场Raman相互作用制备多原子GHZ态.  , doi: 10.7498/aps.50.1689
    [14] 张国民, 杨传章. 多自旋相互作用Ising模型相变类型的Monte Carlo研究.  , doi: 10.7498/aps.42.1680
    [15] 马锦秀, 徐至展. 双频强激光与等离子体相互作用中的双稳态效应.  , doi: 10.7498/aps.38.706
    [16] 王福高, 唐坤发, 胡嘉桢. 三结点hierarchical晶格上具有三体相互作用伊辛模型的临界行为.  , doi: 10.7498/aps.38.1196
    [17] 贺贤土. 等离子体中粒子与cavitons相互作用.  , doi: 10.7498/aps.36.199
    [18] 熊小明, 周世勋. 强磁场中库仑相互作用的少体二维电子气的能量.  , doi: 10.7498/aps.36.1235
    [19] 徐至展, 殷光裕, 张燕珍, 林康春. 激光等离子体相互作用中的受激布里渊散射.  , doi: 10.7498/aps.32.481
    [20] 张历宁, 安瑛, 陈庭金, 戴元本. 复合模型和∑的四体衰变.  , doi: 10.7498/aps.18.264
计量
  • 文章访问数:  97
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-17

/

返回文章
返回
Baidu
map