搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

eXTP聚焦镜电子偏转器仿真分析与设计

郑人洲 强鹏飞 杨彦佶 闫永清 李悦 盛立志 陈勇

引用本文:
Citation:

eXTP聚焦镜电子偏转器仿真分析与设计

郑人洲, 强鹏飞, 杨彦佶, 闫永清, 李悦, 盛立志, 陈勇

Simulation analysis and design of electron deflector for eXTP focusing telescope

Zheng Renzhou, Qiang Pengfei, Yang Yanji, Yan Yongqing, Li Yue, Sheng Lizhi, Chen Yong
PDF
导出引用
  • X射线聚焦望远镜是进行空间X射线观测的核心设备,为保证其观测结果的准确性,需要对进入聚焦镜的低能电子进行有效的偏转,达到降低本底噪声的目的。本文针对增强型X射线时变与偏振空间天文台(enhanced X-ray Timing and Polarimetry Mission,eXTP)聚焦镜电子偏转器研制工作,满足聚焦镜光学系统对于低能电子的偏转需求,兼顾轻量化、电子偏转能力以及电磁兼容性能等问题,采用有限元分析软件COMSOL Multiphysics建立了电子偏转器及聚焦镜镜片的全物理仿真模型,分析了磁感应强度分布、电子偏转轨迹以及磁场对聚焦镜镜片的影响,完成了电子偏转器电磁参数设计。模拟结果表明,电子偏转器周围空间中磁感应强度沿半径方向减小,两根辐条正中间磁感应强度最大值可达0.027 T。在磁感应强度平面及纵向分布中,当半径大于280 mm或纵向距离大于60 mm时,磁感应强度小于5×10-5 T (0.5Gs),满足电磁兼容性能设计要求。当入射角≤10°时,电子偏转效率随电子能量和入射角增大而减小,50 keV能量以下电子偏转效率可达100%,满足电子偏转设计要求。聚焦镜镜片底端距离电子偏转器130 mm时,聚焦镜镜片在磁场的作用下,应力大小仅10-3 N/m2量级,形变大小仅10-5 nm量级,表明磁场不会对聚焦镜的光学性能产生影响。这些结果为eXTP聚焦镜电子偏转器的研制工作提供了重要参考。
    X-ray focusing telescope is the core equipment for space X-ray observation. In order to ensure the accuracy of the observation results, it is necessary to deflect the low-energy electrons entering the focusing telescope effectively to reduce the background noise. In this paper, the electron deflector for enhanced X-ray Timing and Polarimetry Mission (eXTP) focusing telescope was developed to meet the deflection requirements of low-energy electrons in the focusing telescope optical system, and to take into account the lightweight, electron deflection ability and electromagnetic compatibility. The finite element analysis software COMSOL Multiphysics was used to establish the full physical simulation model of the electron deflector and focusing telescope mirrors. The magnetic flux density distribution, electron deflection trajectories and the effect of magnetic field on focusing telescope mirrors were analyzed, and the electromagnetic parameters of the electron deflector were designed. The simulation results show that the closer to the magnet and the center of electron deflector, the greater the magnetic flux density, and the maximum magnetic flux density in the middle of the two spokes can reach 0.027 T. When the radius is larger than 280 mm, the longitudinal distance is larger than 60 mm, the magnetic flux density is less than 5×10-5 T (0.5Gs), that is, the geomagnetic intensity, which meets the design requirements of electromagnetic compatibility performance. When the incidence angle is ≤10°, the electron deflection efficiency decreases with the increase of electron energy and incidence angle, and the deflection efficiency of electrons below 50 keV energy can reach 100%, which meets the design requirements of electron deflection. In addition, as the focusing telescope mirrors are away from the electron deflector, the area of mirrors affected by the magnetic field becomes smaller and smaller. When the distance between the mirror bottom and electron deflector is 130 mm, the magnetic flux density at the mirror bottom only reaches 10-4 T. Similarly, as the focusing telescope mirrors are away from the electron deflector, the stress at the mirror bottom decreases from 103 N/m2 at 10 mm to 10-2 N/m2 at 60 mm, and the deformation at mirror bottom decreases from ~nm at 10 mm to 10-4 nm at 60 mm. When the distance between the mirror bottom and electron deflector is 130 mm, the stress is only 10-3 N/m2, and the deformation is only 10-5 nm, indicating that the magnetic field does not affect the optical properties of the focusing telescope. The above simulation analyses show that the design parameters of NdFeB magnet structure of the electron deflector fully meet the requirements of the eXTP focusing telescope optical system for the deflection of low-energy electrons. And the deflection efficiency of electrons with 25 keV energy, incidence angle within ±5°, and deflection distance of 5250 mm is 100%. It provides an important reference for the development of electron deflector for eXTP focusing telescope.
  • [1]

    Yuan W M, Zhang C, Chen Y. 2018Sci. China: Phys. Mech. 483

    [2]

    Jeong S, Panasyuk M I, Reglero V 2018Space Sci. Rev. 21425

    [3]

    Zhang S N, Santangelo A, Feroci M 2019Sci. China Phys. Mech. 6225

    [4]

    Zand J J M, Bozzo E, Qu J L 2019Sci. China Phys. Mech. 62029506

    [5]

    Aslanyan V, Keresztes K, Feldman C, et al. 2019Rev. Scientif. Inst. 90(12) 124502

    [6]

    Zhang S N, Santangelo A, Feroci M, et al. 2018Sci. China: Phys. Mech. 62(2): 1-25

    [7]

    Yuan W M, Zhang C, Feng H, et al. 2015Swift: 10 Years of Discovery

    [8]

    Yuan W M, Chen Z, Ling Z, et al. 2018Proc. SPIE: Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray 2018: 1069925

    [9]

    Yuan W M, Zhang C, Chen Y, et al. 2018Sci. China: Phys. Mech. 03(v.48):6-25(in chinese) [袁为民, 张臣, 陈勇, 等. 2018中国科学: 物理学力学天文学03(v.48):6-25]

    [10]

    Chen Y, Cui W W, Han D W, et al. 2020Proc. SPIE: Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray 2020: 11444B

    [11]

    Gehrels N, Chincarini G, Giommi P, et al. 2004Astrophys. J. 611(2): 1309

    [12]

    Willingale R 2000 An electron diverter for the Swift Telescope XRA study note XRT-LUX-RE-011/1 University of Leicester

    [13]

    Friedrich P, Bräuninger H, Budau B, et al. 2012Proc. SPIE Vol. 844384431S

    [14]

    Spiga D, Fioretti V, Bulgarelli A, et al. 2008Proc. SPIE: Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray 701170112Y

    [15]

    Wang L, Qin L, Cheng J, et al. 2020IEEE Trans. Appl. Supercond. 30(4) 1-5

    [16]

    Lotti S, Mineo T, Jacquey C, et al. 2018Exp. Astron. 45(3) 411-428

    [17]

    Fioretti V, Bulgarelli A, Molendi S, et al. 2018Astrophys. J. 867: 9

    [18]

    Qi L Q, Li G, Xu Y P, et al. 2020Nucl. Instrum. Meth. A 963163702

    [19]

    Qi L Q, Li G, Xu Y P, et al. 2021Exp. Astron. 51: 475-492

    [20]

    Aguilar M, Alcaraz J, Allaby J, et al. 2002Phys. Rep. 366331-405

    [21]

    Aguilar M, Cavasonza L A, Ambrosi G, et al. 2021 Phys. Rep. 8941-116

  • [1] 霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高. 铁酸铋薄膜光电流的磁场调制研究.  , doi: 10.7498/aps.72.20222053
    [2] 崔翔. 电流连续的细导体段模型的磁场及电感.  , doi: 10.7498/aps.69.20191212
    [3] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响.  , doi: 10.7498/aps.63.057301
    [4] 唐田田, 张朝民, 张敏. 氢负离子在磁场和金属面附近电子通量分布的研究.  , doi: 10.7498/aps.62.123201
    [5] 李文慧, 忽满利, 马志博, 种兰祥, 万云. LiNbO3晶体中屏蔽光伏孤子自偏转的时空演化与可控因素.  , doi: 10.7498/aps.61.020201
    [6] 张红, 张春元, 张慧亮, 刘建军. 外加磁场下抛物型量子线中的带电激子.  , doi: 10.7498/aps.60.077301
    [7] 支启军. N=28丰中子核的形变和形状共存研究.  , doi: 10.7498/aps.60.052101
    [8] 姜文龙, 孟昭晖, 丛林, 汪津, 王立忠, 韩强, 孟凡超, 高永慧. 双量子阱结构OLED效率和电流的磁效应.  , doi: 10.7498/aps.59.6642
    [9] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响.  , doi: 10.7498/aps.59.1143
    [10] 陈杰, 鲁习文. 基于磁荷面分布的舰船磁场预测方法.  , doi: 10.7498/aps.58.3839
    [11] 汪津, 华杰, 丁桂英, 常喜, 张刚, 姜文龙. 磁场作用下的有机电致发光.  , doi: 10.7498/aps.58.7272
    [12] 张雯. 磁场微重力效应的研究.  , doi: 10.7498/aps.58.2405
    [13] 王新军, 王玲玲, 黄维清, 唐黎明, 陈克求. 磁场下含结构缺陷多组分超晶格中的局域电子态和电子输运.  , doi: 10.7498/aps.55.3649
    [14] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响.  , doi: 10.7498/aps.55.6526
    [15] 李玉现, 刘建军, 李伯臧. 量子点接触中的电导与热功率:磁场与温度的影响.  , doi: 10.7498/aps.54.1366
    [16] 张国英, 张 辉, 刘春明, 周永军. 钢铁材料中形变诱导相变超细化机理研究.  , doi: 10.7498/aps.54.1771
    [17] 黄维清, 陈克求, 帅志刚, 王玲玲, 胡望宇. 磁耦合效应对半无限超晶格中表面电子态的影响.  , doi: 10.7498/aps.53.2330
    [18] 欧阳世根, 关毅, 佘卫龙. 旋转超导体中的电流与电磁场.  , doi: 10.7498/aps.51.1596
    [19] 陈正林, 张杰. 对超热电子诱生的磁场分布的估算.  , doi: 10.7498/aps.50.735
    [20] 陈正林, 张 杰. 对超热电子诱生的磁场分布的估算.  , doi: 10.7498/aps.49.2180
计量
  • 文章访问数:  276
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-06

/

返回文章
返回
Baidu
map