搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

208Pb的Lane自洽色散光学势研究

杜文青 赵岫鸟

引用本文:
Citation:

208Pb的Lane自洽色散光学势研究

杜文青, 赵岫鸟

Investigation of Lane-consistent dispersive optical-model potential for 208Pb

DU Wenqing, ZHAO Xiuniao
PDF
HTML
导出引用
  • 本工作采用色散光学模型成功构建了球形核208Pb的Lane自洽色散光学势, 采用同一套势参数同时对208Pb的两种核子(中子和质子)弹性散射数据进行了良好的描述, 高质量地计算了包括中子总截面、核子弹性散射角分布、分析本领以及(p, n)准弹性散射角分布在内的相关核子散射数据, 理论计算结果与实验数据具有很好的一致性.
    Lead is an important alloy material nuclide. And lead eutectic is also an important coolant, which is applied in the construction of Lead-cooled Fast Reactor such as The European Lead-cooled System (ELSY) and the China Lead-based Research reactor (CLEAR-I), as well as in research related to Generation-IV reactor. The study and calculation of lead nuclear data have important theoretical value and application prospects. 208Pb is the most stable and abundant isotope in lead nuclei, and high quality description of 208Pb nuclear scattering data is the key to achieving theoretical calculations of nuclear reaction data for lead nuclei. Based on the dispersive optical model, this work describes nucleon scattering on 208Pb by using the dispersive optical potential. The dispersive optical model potential is defined by energy-dependent real potentials, imaginary potentials, the corresponding dispersive contributions to the real potential which are calculated analytically from the corresponding imaginary potentials by using a dispersion relation, and isospin dependence is reasonably considered by introducing isovector component (i.e. Lane term) in the potential depth constants of the real Hartree-Fock potential $ V_{\rm{HF}}$ and the surface imaginary potential $ W_{\rm{s}}$. Unlike K-D potential, which requires two different sets of parameters to describe neutron and proton induced scattering data, this optical potential uses the same set of parameters to simultaneously describe nucleon-nucleus scattering data. The derived potential in this work shows a very good description of nucleon-nucleus scattering data on 208Pb up to 200 MeV. Calculated neutron total cross sections, neutron and proton elastic scattering angular distributions, as well as neutron and proton elastic analyzing powers are shown to be in good agreement with experimental data. Additionally, the difference in potential between the neutron and protons induced is described by the isovector term, a reasonable good prediction of quasielastic (p, n) scattering data is achieved.
  • 图 1  中子和质子入射时的实部势$V_{\rm{HF}}$和表面虚部势$W_{\rm{s}}$深度随能量的变化情况

    Fig. 1.  Energy dependence of the real potential $V_{\rm{HF}}$ and the surface imaginary potential $W_{\rm{s}}$ depths for neutron and proton induced reactions on $^{208}{\rm{Pb}}$.

    图 2  $^{208}{\rm{Pb}}$的中子总截面计算结果与K-D中子光学势给出的计算结果以及相关实验数据的比较

    Fig. 2.  Comparison of the calculated neutron total cross section for $^{208}{\rm{Pb}}$ with experimental data and those by K-D potential.

    图 3  $^{208}{\rm{Pb}}$的中子弹性散射截面计算结果与K-D中子光学势给出的计算结果以及天然铅的相关实验数据的比较

    Fig. 3.  Comparison of the calculated neutron elastic cross section for $^{208}{\rm{Pb}}$ with experimental data and those by K-D potential.

    图 4  $^{208}{\rm{Pb}}$的中子弹性散射角分布计算结果与K-D中子光学势给出的计算结果以及相关实验数据的比较

    Fig. 4.  Calculated neutron elastic scattering angular distributions for $^{208}{\rm{Pb}}$, compared with experimental data and those by K-D potential.

    图 5  $^{208}{\rm{Pb}}$的中子弹性散射分析本领计算结果与K-D中子光学势给出的计算结果以及相关实验数据的比较

    Fig. 5.  Calculated neutron elastic scattering analyzing powers for $^{208}{\rm{Pb}}$, compared with experimental data and those by K-D potential.

    图 6  $^{208}{\rm{Pb}}$的质子弹性散射角分布计算结果与K-D质子光学势给出的计算结果以及相关实验数据的比较

    Fig. 6.  Calculated proton elastic scattering angular distributions for $^{208}{\rm{Pb}}$, compared with experimental data and those by K-D potential.

    图 7  $^{208}{\rm{Pb}}$的质子弹性散射分析本领计算结果与K-D质子光学势给出的计算结果以及相关实验数据的比较

    Fig. 7.  Calculated proton elastic scattering analyzing powers for $^{208}{\rm{Pb}}$, compared with experimental data and those by K-D potential.

    图 8  $^{208}{\rm{Pb}}$的(p, n)准弹性散射角分布计算结果与相关实验数据的比较

    Fig. 8.  Comparison of (p, n) angular distributions of the quasielastic (p, n) scattering on $^{208}{\rm{Pb}}$ with experimental data.

    表 1  $^{208}{\rm{Pb}}$的色散光学模型势参数

    Table 1.  Dispersive optical-model potential parameters for nucleon induced reactions on $^{208}{\rm{Pb}}$.

    $V_{HF}$VolumeSurfaceSpin-orbitCoulomb
    Potential$V_{0}$ = 52.4 MeV$A_{\rm{v}}$ = 12.47 MeV$W_{0}$ = 15.82 MeV$V_{\rm{so}}$ = 8.1 MeV$C_{\rm{Coul}}$ = 1.0 MeV
    $\lambda_{\rm{HF}}$ = 0.009${\rm{MeV}}^{-1}$$B_{\rm{v}}$ = 81.67 MeV$B_{\rm{s}}$ = 13.31 MeV$\lambda_{\rm{so}}$ = 0.005${\rm{MeV}}^{-1}$
    $C_{\rm{viso}}$ = 23.85 MeV$E_{\rm{a}}$ = 56 MeV$C_{\rm{s}}$ = 0.02${\rm{MeV}}^{-1}$$W_{\rm{SO}}$ = -3.1 MeV
    $C_{\rm{wiso}}$ = 14.98 MeV$B_{\rm{so}}$ = 160 MeV
    Geometry$r_{\rm{HF}}$ = 1.24${\rm{fm}}$$r_{\rm{v}}$ = 1.25${\rm{fm}}$$r_{\rm{s}}$ = 1.18${\rm{fm}}$$r_{\rm{so}}$ = 1.08${\rm{fm}}$$r_{\rm{c}}$ = 1.03${\rm{fm}}$
    $a_{\rm{HF}}$ = 0.63${\rm{fm}}$$a_{\rm{v}}$ = 0.69${\rm{fm}}$$a_{\rm{s}}$ = 0.63${\rm{fm}}$$a_{\rm{so}}$ = 0.59${\rm{fm}}$$a_{\rm{c}}$ = 0.61${\rm{fm}}$
    下载: 导出CSV
    Baidu
  • [1]

    吴宜灿, 柏云清, 宋勇, 黄群英, 刘超, 王明煌, 周涛, 金鸣, 吴庆生, 汪建业, 蒋洁琼, 胡丽琴, 李春京, 高胜, 李亚洲, 龙鹏程, 赵柱民, 郁杰, FDS团队 2014 核科学与工程 34 201

    Wu Y C, Bai Y Q, Song Y, Huang Q Y, Liu C, Wang M H, Zhou T, Jin M, Wu Q S, Wang J Y, Jang J Q, Hu L Q, Li C J, Gao S, Li Y Z, Long P C, Zhao Z M, Yu J, FDS Team 2014 Nucl. Sci. and Eng. 34 201

    [2]

    Nifenecker H, David S, Loiseaux J M, Meplan O 2001 Nucl. Instrum. Methods A 463 505Google Scholar

    [3]

    Gudowski W 2000 Nucl. Phys. A 663-664 169cGoogle Scholar

    [4]

    Qaim S M 2001 Radiochim. Acta 89 189Google Scholar

    [5]

    Stankovskiy A, Malambu E, Eynde G V D, Diez C J 2014 Nucl. Data Sheets 118 513Google Scholar

    [6]

    Yang W S, Khalil H S 1999 Trans. Am. Nucl. Soc. 81 273

    [7]

    Martin M J 2007 Nucl. Data Sheets 108 1583Google Scholar

    [8]

    Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231Google Scholar

    [9]

    Soukhovitski? E Sh, Capote R, Quesada J M, Chiba S 2005 Phys. Rev. C 72 024604Google Scholar

    [10]

    Capote R, Chiba S, Soukhovitski? E Sh, Quesada J M, Bauge E 2008 J. Nucl. Sci. Tech. 45 333

    [11]

    Zhao X N, Sun W L, Soukhovitski? E Sh, Martyanov D S, Quesada J M, Capote R 2021 J. Phys. G: Nucl. Part. Phys. 48 075101Google Scholar

    [12]

    Zhao X N, Du W Q, Capote R, Soukhovitski? E Sh 2023 Phys. Rev. C 107 064606Google Scholar

    [13]

    Mahaux C, Sartor R 1986 Phys. Rev. Lett. 57 3015Google Scholar

    [14]

    赵岫鸟, 杜文青 2023 72 222401Google Scholar

    Zhao X N, Du W Q 2023 Acta Phys. Sin. 72 222401Google Scholar

    [15]

    Quesada J M, Capote R, Soukhovitski? E Sh, Chiba S 2007 Phys. Rev. C 76 057602Google Scholar

    [16]

    Lipperheide R 1967 Z. Phys. 202 58Google Scholar

    [17]

    Mahaux C, Sartor R 1991 Nucl. Phys. A 528 253Google Scholar

    [18]

    Brown G E, Rho M 1981 Nucl. Phys. A 372 397Google Scholar

    [19]

    Delaroche J P, Wang Y, Rapaport J 1989 Phys. Rev. C 39 391

    [20]

    Quesada J M, Capote R, Molina A, Lozano M, Raynal J 2003 Phys. Rev. C 67 067601Google Scholar

    [21]

    Chiba S, Iwamoto O, Yamanouti Y, Sugimoto M, Mizumoto M, Hasegawa K, Soukhovitski? E Sh, Porodzinski? Y V, Watanabe Y 1997 Nucl. Phys. A 624 305Google Scholar

    [22]

    Lane A M 1962 Phys. Rev. Lett. 8 171Google Scholar

    [23]

    Lane A M 1962 Nucl. Phys. 35 676Google Scholar

    [24]

    EXchange FORmat database (EXFOR) is maintained by the Network of Nuclear Reaction Data Centers (see www-nds.iaea.org/nrdc/). Data available online (e.g., at www-nds.iaea.org/exfor/

    [25]

    Capote R, Herman M, Oblo $ \breve{z}$insk $ \acute{y}$ P, Young P G, Goriely S, Belgya T, Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O, Chadwick M B, Fukahori T, Ge Z G, Han Y L, Kailas S, Kopecky J, Maslov V M, Reffo G, Sin M, Soukhovitskiĩ E Sh, Talou P 2009 Nucl. Data Sheets 110 3107

  • [1] 赵岫鸟, 杜文青. 基于色散光学模型的40Ca核子散射数据计算.  , doi: 10.7498/aps.72.20231054
    [2] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究.  , doi: 10.7498/aps.66.194201
    [3] 侯艳洁, 胡春光, 张雷, 陈雪娇, 傅星, 胡小唐. 纳米有机薄膜有效导电层的反射光谱法研究.  , doi: 10.7498/aps.65.200201
    [4] 许军, 谢文浩, 邓勇, 王侃, 罗召洋, 龚辉. 快速多极边界元法用于扩散光学断层成像研究.  , doi: 10.7498/aps.62.104204
    [5] 邓勇, 张喧轩, 罗召洋, 许军, 杨孝全, 孟远征, 龚辉, 骆清铭. 融合结构先验信息的稳态扩散光学断层成像重建算法研究.  , doi: 10.7498/aps.62.014202
    [6] 张计才, 朱遵略, 孙金锋. 超冷钠原子弹性散射特性的精确计算.  , doi: 10.7498/aps.62.013401
    [7] 游阳明, 王炳章, 王吉有. P原子的光学模型势与核极化修正.  , doi: 10.7498/aps.61.202401
    [8] 齐贝贝, 刘迎, 贾光一, 刘小君. 用双点源-P1近似光学模型反演生物组织的光学参量.  , doi: 10.7498/aps.60.128701
    [9] 沈自才, 孔伟金, 冯伟泉, 丁义刚, 刘宇明, 郑慧奇, 赵雪, 赵春晴. 热控涂层光学性能退化模型研究.  , doi: 10.7498/aps.58.860
    [10] 马引群, 马中玉. 6Li与核弹性散射的微观光学势.  , doi: 10.7498/aps.57.74
    [11] 掌蕴东, 孙旭涛, 何竹松. 激光感生色散光学滤波理论.  , doi: 10.7498/aps.54.3000
    [12] 贾晓玲, 掌蕴东, 王骐, 马祖光. 强磁场下钾原子法拉第反常色散光学滤波器的滤波行为.  , doi: 10.7498/aps.51.2489
    [13] 张武, 王燕. 光学非均匀复合材料的多元滞后器模型.  , doi: 10.7498/aps.43.1380
    [14] 杨援, 戴建华, 张洪钧. 光学双稳态离散模型的动力学行为.  , doi: 10.7498/aps.43.699
    [15] 朱萍, 徐加豹, 高琴. 以改进的定域密度近似研究核子-有限核的相对论微观光学势.  , doi: 10.7498/aps.42.9
    [16] 李彤, 徐向东, 刘强, 钱青, 陈学俊. 多重散射展开方法应用于电子-氢原子弹性散射角分布的计算.  , doi: 10.7498/aps.42.905
    [17] 朱沛然, 江伟林, 徐天冰, 殷士端. 硅化物薄膜的质子弹性散射分析.  , doi: 10.7498/aps.41.2049
    [18] 何祚庥, 张肇西, 谢诒成. 层子模型和高能电子深度非弹性散射.  , doi: 10.7498/aps.24.115
    [19] 刘炳东, 何国柱. 用高能核子非弹性散射研究核力有效势.  , doi: 10.7498/aps.22.569
    [20] 罗辽复, 徐行. 关于K+介子和核子的弹性散射.  , doi: 10.7498/aps.18.291
计量
  • 文章访问数:  310
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-10
  • 修回日期:  2024-12-30
  • 上网日期:  2025-01-13

/

返回文章
返回
Baidu
map