-
基于带输运模型理论建立了LiNbO3晶体屏蔽光伏孤子的时空演化动力学方程, 用有限差分方法求解发现, LiNbO3晶体中明、暗屏蔽光伏孤子存在大的自偏转, 并且光孤子形状变得具有不对称性, 偏转方向的曲线斜率绝对值变大, 偏转反方向的曲线斜率绝对值变小. 分析研究表明影响其自偏转度和形变的因素包括受主浓度NA, 暗辐射强度Id 和外加电场E0 . 其他条件不变的情况下NA 越大, 明孤子的自偏转度与形变越小, 暗孤子的自偏转度与形变反而越大; 对于Id , 它对明暗孤子的影响是相同的, Id 越小, 晶体里诱导出的空间电荷场越容易达到饱和, 当信号光中心光强与暗辐射强度之比为10-1时无饱和现象产生; 随着E0 数值的增大, 明孤子的自偏转度和形变减小, 而暗孤子的自偏转度和形变反而增大.According to the band transport model theory, we establish the temporal evolution for dynamic equations concerning screening photovoltaic solitons in LiNbO3 crystal in this paper. By using the finite difference method, we find that there exist large self-deflection bright and dark screening photovoltaic solitons in LiNbO3 crystal, where the shape of the solitons becomes asymmetry ic with the increase of time. In addition, the absolute value of slope of the curve in deflection direction turns larger, while it tends to be smaller in the opposite direction as time increases. On the other hand, analysis shows that the factors related to the degree of self-deflection and deformation include acceptor concentration NA, dark radiation Id and applied electric field E0. When NA rises, the self-deflection degree and the deformation of bright soliton become smaller and the counterpart of dark soliton has opposite tendency while Id and E0 keep invariant. Moreover, for the bright and dark solitons, the space charge field induced in crystals is easier to reach saturation as Id diminishes and there is no saturation phenomenon in both cases when the ratio between center light intensity and dark radiation intensity is 10-1. With the E0 increases, the bright soliton self-deflection degree and deformation decrease, while the dark soliton self-deflection degree and deformation increase.
[1] Ashkin A, Byod G, Dziedzic J M, Smith R G, Ballman A A, Levinstein J J, Nassau K 1966 Appl. Phys. Lett. 9 72
[2] Segev M, Crosignani B, Yariv A, Fischer B 1992 Phys. Rev. Lett. 68 923
[3] Duree G C, Shultz Jr J L, Salamo G J, Segev M, Yariv A, Crosignani B, Porto P D, Sharp E J, Neurgaonker R R 1993 Phys. Rev. Lett. 71 533
[4] Maufoy J, Fressengeas N, Wolferserger D, Kugel G 1999 Phys. Rev. E 59 6116
[5] CastilloM D I, Aguilar P A M, Sanchez-Mondragon J J, Stepanov S, Bysloukh V 1994 Appl. Phys. Lett. 64 408
[6] Shih M, Leach P, Segev M, Garrett M H, Salamo G, Valley G C 1996 Opt. Lett. 21 324
[7] Segev M, Valley G C, Crosignani B, Porto P D, Yariv A 1994 Phys. Rev. Lett. 73 3211
[8] Segev M, Shih M, Valley G C 1996 J. Opt. Soc. Am. B 13 706
[9] Kos K, MengH, Salamo B, Shih M, Segev M, Valley G C 1996 Phys. Rev. E 53 R4330
[10] Ryf R,Wiki M, Montemezzani G, Guter P, Zozulya A A 1999 Opt. Commum. 159 339
[11] Segev M, Valley G C, BashawMC, Taya M, Fejer M M 1997 J. Opt. Soc. Am. B 14 1772
[12] Valley G C, SegevM, Crosignani B, Yariv A, FejerMM, Bashaw M C 1994 Phys. Rev. A 50 R4457
[13] TayaM, Bashaw M C, Fejer M M, Segev M, Valley G C 1995 Phys. Rev. A 52 3095
[14] Chen Z, Segev M, Wilson D W, Muller R E, Maker P D 1997 Phys. Rev. Lett. 78 2948
[15] Chauvet M, Coda V, Maillatte H, Fazio E, Salamo G 2005 Opt. Lett. 30 1977
[16] Zhang Y Q, Lu K Q, Zhang L, Zhang M Z, Li K H 2008 Acta Phys. Sin. 57 6354 (in Chinese)[张贻齐, 卢克清, 张磊, 张美志, 李可昊 2008 57 6354]
[17] Kukhtarev N V, Markov V B, Oduloc S G, SoskinMS, Vinetskii V L 1979 Ferroeletrics 22 949
[18] Ren L, Liu L, Liu D, Zu J, Luan Z 2003 J. Opt. Soc. Am. B 20 2162
-
[1] Ashkin A, Byod G, Dziedzic J M, Smith R G, Ballman A A, Levinstein J J, Nassau K 1966 Appl. Phys. Lett. 9 72
[2] Segev M, Crosignani B, Yariv A, Fischer B 1992 Phys. Rev. Lett. 68 923
[3] Duree G C, Shultz Jr J L, Salamo G J, Segev M, Yariv A, Crosignani B, Porto P D, Sharp E J, Neurgaonker R R 1993 Phys. Rev. Lett. 71 533
[4] Maufoy J, Fressengeas N, Wolferserger D, Kugel G 1999 Phys. Rev. E 59 6116
[5] CastilloM D I, Aguilar P A M, Sanchez-Mondragon J J, Stepanov S, Bysloukh V 1994 Appl. Phys. Lett. 64 408
[6] Shih M, Leach P, Segev M, Garrett M H, Salamo G, Valley G C 1996 Opt. Lett. 21 324
[7] Segev M, Valley G C, Crosignani B, Porto P D, Yariv A 1994 Phys. Rev. Lett. 73 3211
[8] Segev M, Shih M, Valley G C 1996 J. Opt. Soc. Am. B 13 706
[9] Kos K, MengH, Salamo B, Shih M, Segev M, Valley G C 1996 Phys. Rev. E 53 R4330
[10] Ryf R,Wiki M, Montemezzani G, Guter P, Zozulya A A 1999 Opt. Commum. 159 339
[11] Segev M, Valley G C, BashawMC, Taya M, Fejer M M 1997 J. Opt. Soc. Am. B 14 1772
[12] Valley G C, SegevM, Crosignani B, Yariv A, FejerMM, Bashaw M C 1994 Phys. Rev. A 50 R4457
[13] TayaM, Bashaw M C, Fejer M M, Segev M, Valley G C 1995 Phys. Rev. A 52 3095
[14] Chen Z, Segev M, Wilson D W, Muller R E, Maker P D 1997 Phys. Rev. Lett. 78 2948
[15] Chauvet M, Coda V, Maillatte H, Fazio E, Salamo G 2005 Opt. Lett. 30 1977
[16] Zhang Y Q, Lu K Q, Zhang L, Zhang M Z, Li K H 2008 Acta Phys. Sin. 57 6354 (in Chinese)[张贻齐, 卢克清, 张磊, 张美志, 李可昊 2008 57 6354]
[17] Kukhtarev N V, Markov V B, Oduloc S G, SoskinMS, Vinetskii V L 1979 Ferroeletrics 22 949
[18] Ren L, Liu L, Liu D, Zu J, Luan Z 2003 J. Opt. Soc. Am. B 20 2162
计量
- 文章访问数: 7137
- PDF下载量: 300
- 被引次数: 0