搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计及陷阱演变的高介电芳香族聚脲老化特性及机理研究

冯阳 张硕 周彬 刘培焱 杨心如 李盛涛

引用本文:
Citation:

计及陷阱演变的高介电芳香族聚脲老化特性及机理研究

冯阳, 张硕, 周彬, 刘培焱, 杨心如, 李盛涛

Study on aging characteristics and mechanism of high-dielectric aromatic polyureas involving trap evolutions

FENG Yang, ZHANG Shuo, ZHOU Bin, LIU Peiyan, YANG Xinru, LI Shengtao
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 本文采用热氧老化方式模拟聚脲(polyurea,PU)薄膜在高温工况下的老化行为,根据PU薄膜介电储能特性的变化规律将其老化过程划分为3个阶段.结果表明:老化初期,氧气的桥接作用促使分子链规整排列,相邻脲基团之间的氢键作用稍有增强,分子链间距减小,介电常数减小,而击穿场强变化较小;老化中期,醚键断裂并诱导形成联苯结构,体系无定形程度加剧,介电常数增大,但联苯结构加深了陷阱深度,导致载流子迁移率降低,这提高了薄膜的击穿场强;老化后期,氧气促使脲基分解,造成贡献深陷阱能级的基团数量减少,同时主链发生裂解,并释放CO2与H2O等小分子物质,这些因素共同导致了PU的击穿场强显著降低.热氧老化过程中PU的储能密度表现出与击穿场强相同的时间依赖性,证明了计及陷阱演变的PU储能性能退化机理:氧气对醚键和脲基的分解作用分别诱发了联苯结构的形成和主链的裂解,这改变了陷阱深度,其中陷阱深度越浅,PU性能退化越显著.
    Dielectric capacitors are essential energy storage devices with high power density. The dielectric films of capacitors will undergo aging at working temperatures and cause performance degradation. Polyurea (PU) is a potential working dielectric for capacitors with high energy density and low dielectric loss. However, the aging characteristics and underlying mechanism of PU has never been discussed. Given the operating temperature for commercially available dielectric capacitors, PU is exposed to 80℃ for different durations to investigate its aging characteristics. Compared with dielectric constant, breakdown strength changes significantly with aging time, which can be used as a characteristic parameter to evaluate the aging degree of PU. Combing the experimental and simulation methods, the correlation between molecular structure, trap properties and breakdown strength during thermo-oxidative aging has been studied and established. The results show that: the thermal-oxidative aging of PU can be divided into three stages. In the early stage, the bridging effect of oxygen promotes the order arrangement of molecular chains, which is shown in Fig. (a). It not only reduces the molecular chain spacing, but also slightly enhances the H-bonding interaction between adjacent urea groups. As a result, the dielectric constant decreases, while the breakdown strength are almost unchanged. In the middle stage, ether bond cleavage induces the formation of biphenyl structures, leading to a disordered structure, which is illustrated in Fig. (b). The enhanced mobility effect increases the dielectric constant. Meanwhile, the biphenyl structures deepen the trap depth, reduce carrier mobility and increase the breakdown strength. In the late stage, oxygen promotes the decomposition of urea groups, which reduces the number of urea groups that contributes to deep traps. At the same time, the main chain undergoes cleavage, releasing small molecules such as CO2 and H2O, which is revealed in Fig. (c). These factors collectively lead to a significant reduction in the breakdown strength of PU. In addition, the variation of dielectric constant, breakdown strength and energy density in the three stages is summarized, which is shown in Fig. (d).
  • [1]

    Zhang H, Wei T, Zhang Q, Ma W, Fan P, Salamon D, Zhang S T, Nan B, Tan H, Ye Z G 2020 J. Mater. Chem. C. 816648.

    [2]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 281.

    [3]

    Ren W B, Pan J Y, Dan Z K, Zhang T, Jiang J Y, Fan M Z, Hu P H, Li M, Lin Y H, Nan C W, Shen Y 2021 Chem. Eng. J. 420127614

    [4]

    Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51776(in Chinese) [李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭2002 51776]

    [5]

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69217701(in Chinese) [董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏2020 69217701]

    [6]

    Jiang X W, Wang S H, Wang W H, Han R 2021 Elec. Mater. 233156

    [7]

    Wang Q, Wu C, Gao Y F, Liu S M, Liu S Q, Zuo Z, Liang X D 2022 High Volt. 71123

    [8]

    Ye R F, Pei J Y, Zheng M S, Dang Z M 2020 Trans. China Elect. Socie. 353529(in Chinese) [叶润峰, 裴家耀, 郑明胜, 党智敏2020电工技术学报353529]

    [9]

    Li Y X 2021M.S. Thesis ( Chengdu: Southwest Jiaotong University) (in Chinese) [李奕萱2021硕士学位论文(成都: 西南交通大学)]

    [10]

    Wang Y, Zhou X, Lin M R, Lu S G, Lin J H, Furman E, Zhang Q M 2010 IEEE Trans. Dielectr. Electr. Insul. 1728

    [11]

    Wang Y, Zhou X, Lin M R, Zhang Q M 2009 Appl. Phys. Lett. 94202905

    [12]

    Feng Y, Jiang L H, Yang A Q, Liu X, Yang L Q, Lu G H, Li S T 2022 Macromol. Rapid Commun. 432100700

    [13]

    Wu S, Lin MR, Burlingame Q, Zhang Q M 2014Appl. Phys. Lett. 104 072903

    [14]

    Zhao Z H, Zhang S, Li M R, Feng Y, Yang L Q, Li S T 2024J. Appl. Phys. 135194103

    [15]

    Hattori T, Takahashi Y, Iijima M, Fukada E 19969th International Symposium on Electrets (ISE 9) Shanghai, China, SEP 25-30, 1996 p819

    [16]

    Zhao Z H, Feng Y, Yang L Q, Zhang S, Liu X, Zhang Y, Li M R, Li S T 2023Appl. Phys. Lett. 123 232901

    [17]

    Wu Y J, Zhao H, Zhang N, Wang H Q, Zhang C Y, Yin L, Bai J B 2024J. Mater. Chem. C 12 2993

    [18]

    Zhu X D, Chen W X, Pan M, Zhou X, Zhang Y, Dong L J 2024 Appl. Polym. Mater. 64808

    [19]

    Feng Y, Yang L Q, Qu G H, Suga T, Nishide H, Chen G G, Li S T 2020 Macromol. Rapid Commun. 412000167

    [20]

    Zhou Y, Yuan C, Wang S J, Zhu Y J, Cheng S, Yang X, Yang Y, Hu J, He J L, Li Q 2020Ener. Stor. Materi. 28 255

    [21]

    Hu J, Zhao X C, Xie J H, Liu Y, Sun S L 2022Journ. Poly. Resear. 29 182

    [22]

    Zhang J Y, Su A S, Xu L L, Wu Z Q, Li Z Y, Zheng J 2021Schweiz. Z. Hydrol. 4 1

    [23]

    Sha G R, Lai B B, Zhao Q L, Sun Y P, Wang X B, Lou W J, Liu X L 2024Tribology. 44 1074

    [24]

    Lu X, Han S, Li Q M, Huang X W, Wang X L, Wang G Y 2016TCES. 31 14(in Chinese)[ 鲁旭,韩帅,李庆民,黄旭炜,王学磊,王高勇2016电工技术学报31 14]

    [25]

    Xiong J, Fan X, Long D J, Zhu B F, Zhang X, Lu J Y, Xie Y C, Zhang Z C 2022J. Mater. Chem. A. 10 24611

    [26]

    Zhang C S, Zhang C, Ren C Y, Huang B D, Xing Z L, Shao T 2024Trans. China Elect. Socie. 39 2193(in Chinese) [张传升, 章程, 任成燕, 黄邦斗, 邢照亮, 邵涛2024电工技术学报39 2193]

    [27]

    Li J L, Wang S J, Zhu Y J, Luo Z, Zhang Y R, Shao Q, Quan H, Wang M T, Hu S X, Yang M C, Fu J, Wang R Hu J, Yuan H, He J L, Li Q 2023J. Mater. Chem. A 11 10659

    [28]

    Yanagisawa Y, Nan Y, Okuro K, Aida T 2018Sci. 359 72

    [29]

    Sebastian N, Contal C, Sanchez-Ferrer A Pieruccini M 2018Soft. Matter. 14 7839

    [30]

    Dong R, Ranjan V, Nardelli M B Bernholc J 2015Phys. Revie. B 92 024203

    [31]

    Feng Y, Qu G H, Li S T 2024Pcsee. 44 3360(in Chinese) [冯阳,渠广昊,李盛涛2024中国电机工程学报44 3360]

    [32]

    Feng Y, Qu G H, Li S T 2024HVE. 50 2363(in Chinese) [冯阳,渠广昊,李盛涛2024高电压技术50 2363]

    [33]

    Feng Y, Yang L Q, Qu G H, Suga T, Nishide H, Chen G, Li S T 2020Macromol. Rapid. Commun. 41 2000167

  • [1] 高建, 王磊, 周恩泽, 唐艳霞, 隋浩然, 武康宁, 李建英. 限域结构热致变色相变环氧复合绝缘陷阱特性的机理.  , doi: 10.7498/aps.74.20241447
    [2] 李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧. 电缆附件用硅橡胶力-热老化特性及电-热-力多物理场耦合仿真研究.  , doi: 10.7498/aps.73.20231869
    [3] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略.  , doi: 10.7498/aps.72.20222012
    [4] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响.  , doi: 10.7498/aps.69.20200592
    [5] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能.  , doi: 10.7498/aps.69.20201031
    [6] 蔡家欢, 李平, 文玉梅, 鲍宜壮, 刘双建. 石英晶振的储能特性.  , doi: 10.7498/aps.65.104205
    [7] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性.  , doi: 10.7498/aps.62.038403
    [8] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究.  , doi: 10.7498/aps.62.157202
    [9] 商怀超, 刘红侠, 卓青青. 低剂量率60Co γ 射线辐照下SOI MOS器件的退化机理.  , doi: 10.7498/aps.61.246101
    [10] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究.  , doi: 10.7498/aps.61.108501
    [11] 罗振飞, 吴志明, 许向东, 王涛, 蒋亚东. 纳米VOx薄膜在空气中的电学特性退化研究.  , doi: 10.7498/aps.60.067302
    [12] 李蕾蕾, 于宗光, 肖志强, 周昕杰. SOI SONOS EEPROM 总剂量辐照阈值退化机理研究.  , doi: 10.7498/aps.60.098502
    [13] 沈自才, 孔伟金, 冯伟泉, 丁义刚, 刘宇明, 郑慧奇, 赵雪, 赵春晴. 热控涂层光学性能退化模型研究.  , doi: 10.7498/aps.58.860
    [14] 陈焕庭, 吕毅军, 陈忠, 张海兵, 高玉琳, 陈国龙. 基于电容和电导特性分析GaN蓝光发光二极管老化机理.  , doi: 10.7498/aps.58.5700
    [15] 朱 利, 杨文革, 徐玲玲, 陈定安, 王 文, 崔一平. 新型有机非线性光学材料L-苹果酸脲薄膜形成机理及性质研究.  , doi: 10.7498/aps.56.569
    [16] 於海武, 徐美健, 段文涛, 隋 展. Yb离子抽运动力学及脉冲储能特性研究.  , doi: 10.7498/aps.56.4158
    [17] 李忠贺, 刘红侠, 郝 跃. 超深亚微米PMOS器件的NBTI退化机理.  , doi: 10.7498/aps.55.820
    [18] 刘红侠, 郑雪峰, 郝 跃. NBT导致的深亚微米PMOS器件退化与物理机理.  , doi: 10.7498/aps.54.1373
    [19] 任红霞, 郝 跃. 新型槽栅PMOSFET热载流子退化机理与抗热载流子效应研究.  , doi: 10.7498/aps.49.1683
    [20] 沈月林, 龚云贵. 非退化的Ashtekar理论中的正能证明.  , doi: 10.7498/aps.44.1534
计量
  • 文章访问数:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map