搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO薄膜发光器件的电抽运随机激射: 随机性的抑制

纪然 蒋书明 夏程涛 杨德仁 马向阳

引用本文:
Citation:

ZnO薄膜发光器件的电抽运随机激射: 随机性的抑制

纪然, 蒋书明, 夏程涛, 杨德仁, 马向阳

Suppression of randomness of electrically pumped random lasing from light-emitting devices based on ZnO films

JI Ran, JIANG Shuming, XIA Chengtao, YANG Deren, MA Xiangyang
PDF
HTML
导出引用
  • 通过以大晶粒水热ZnO薄膜作为发光层并加以恰当图案化处理的策略, 显著抑制了基于ZnO薄膜的金属-绝缘体-半导体(MIS)结构发光器件的电抽运随机激射的随机性. 采用激光直写光刻工艺, 先将硅衬底上的晶粒大小超过500 nm的水热ZnO薄膜图案化为大量的小方块(Block)和“街道(Street)”, 然后制备基于上述图案化ZnO薄膜的MIS结构(Au/SiO2/ZnO)发光器件(light-emitting device, LED). 研究表明: 在相同的注入电流下, 基于图案化ZnO薄膜的发光器件比基于未图案化ZnO薄膜的发光器件具有更少的随机激射模式; 且前者随Block边长的减小而具更少的激射模式, 同时其最强激射模式的波长在更窄的范围内波动. 值得指出的是: 在适当的条件(小注入电流和小Block边长)下, 基于图案化水热ZnO薄膜的发光器件还可产生单模随机激射. 此外, 对比研究还表明: 基于大晶粒水热ZnO薄膜的LED会比基于小晶粒溅射ZnO薄膜的LED具有更小的激射阈值电流, 且在同样的注入电流下具有更少的激射模式和更高的激射光功率. 关于上述结果背后的物理机制, 分析指出: 对基于图案化ZnO薄膜的发光器件而言, 一方面由于单个Block内ZnO薄膜中的晶粒和晶界数量有限, 光多重散射被严重削弱, 那些能够通过光多重散射获得净光增益而产生随机激射的路径与ZnO薄膜未经图案化处理的情形相比要少得多. 另外一方面, 由于单个Block空间有限, 不同激射模式之间的增益竞争使得空间上重叠较大的激射模式不能同时存在. 由于上述两方面的原因, 随着Block边长的减小, 发光器件随机激射的模式会变得更少. 此外, Block之间的光学耦合效应会加剧单个Block内部激射模式之间的增益竞争, 从而进一步减少发光器件的随机激射模式.
    In this work, the randomness of electrically pumped random laser (RL) from ZnO-based metal-insulator-semiconductor (MIS) structured light-emitting device (LED) is significantly suppressed, by using appropriately patterned hydrothermal ZnO film with large crystal grains as the light-emitting layer. The hydrothermal ZnO film on silicon substrate, with the crystal grains sized over 500 nm, is first patterned into a number of square blocks separated by streets by using laser direct writing photolithography. Based on such a patterned ZnO film, the MIS (Au/SiO2/ZnO) structured LEDs are prepared on silicon substrates. Under the same injection current, the LED with the patterned ZnO film exhibits much fewer RL modes than that with the non-patterned ZnO film and, moreover, the former displays ever-fewer RL modes with the the decrease of block size. Besides, the wavelength of the strongest RL mode from the LED with the patterned ZnO film fluctuates in a much narrower range than that with the non-patterned ZnO film. It is worth mentioning that the LED with the patterned hydrothermal ZnO film can even be pumped into the single-mode RL under the desirable conditions such as low injection current and small patterned blocks. Moreover, the comparative investigation indicates that the LED with the large-grain hydrothermal ZnO film exhibits the smaller RL threshold current than that with the small-grain sputtered ZnO film, and the former has fewer RL modes and a higher output lasing power than the latter under the same injection current. As for the physical mechanism behind the aforementioned results, it is analyzed as follows. Regarding the LED with the patterned ZnO film, on the one hand, due to the limited numbers of crystal grains and grain boundaries within a single block, the multiple optical scattering is remarkably suppressed. Then, the paths through which the net optical gain and therefore the lasing action can be achieved via multiple optical scattering are much fewer than those in the case of the non-patterned ZnO film. On the other hand, due to optical gain competition among different RL modes occurring within the limited space of a single block, the RL modes with significant spatial overlap cannot lase simultaneously. For the two-fold reasons as mentioned above, the LED exhibits ever-fewer RL modes with the decrease of the size of blocks. Moreover, the inter-block optical coupling enables the optical gain competition among different RL modes to be more violent within a single block, leading to further reduction of RL modes.
  • 图 1  在硅衬底上制备基于图案化水热ZnO薄膜的MIS结构LED的步骤示意图

    Fig. 1.  Schematic diagram for the rocedures of preparing MIS structured LEDs based on the patterned hydrothermal ZnO film on a silicon substrate.

    图 2  (a) 水热ZnO薄膜经图案化处理后的表面形貌SEM照片; (b) 单个Block内ZnO薄膜表面形貌的SEM照片; (c) Block和Street的截面SEM照片; (d) 单个Block的截面SEM照片

    Fig. 2.  (a) SEM image for the surface morphology of the patterned hydrothermal ZnO film; (b) SEM image for the surface morphology of the ZnO film within a single block; (c) cross-sectional SEM image for the blocks and streets; (d) cross-sectional SEM image for the ZnO film within a single block.

    图 3  各种LED在不同注入电流下采集的电致发光谱 (a) 未经图案化处理的LED; (b) LED-10; (c) LED-5; (d) LED-2.5

    Fig. 3.  EL spectra acquired at different injection currents for various LEDs: (a) Non-patterned LED; (b) LED-10; (c) LED-5; (d) LED-2.5.

    图 4  未经图案化处理的LED, LED-10, LED-5, LED-2.5的电抽运随机激射 (a), (b) 有效激射模式数和SMSR随注入电流的变化情况; (c), (d) 在注入电流分别为 7 mA和 25 mA时采集的20幅EL谱中最强激射峰的波长分布情况, 其中误差棒的最高点和最低点分别代表最大值和最小值, 方框的中间线代表中值、上边线和下边线分别代表第三四分位数和第一四分位数

    Fig. 4.  Electrically pumped random lasing from non-patterned LED, LED-10, LED-5, and LED-2.5: (a), (b) Number of effective lasing modes and SMSR as a function of injected current; (c), (d) distributions of the wavelengths of the strongest lasing peaks in the 20 EL spectra acquired at the injection currents of 7 mA and 25 mA, respectively, the error bar represents the minimum and maximum values, and the middle line in the box represents the median value, the upper and lower lines of the box represent the third quartile (Q3) and first quartile (Q1), respectively.

    图 5  对于LED-2.5在注入电流为7 mA时采集的 20幅EL谱 (a) 出现单模、双模、三模激射的例数, 插图为出现单模激射的EL谱; (b) 单模激射的峰位分布情况

    Fig. 5.  For the 20 EL spectra of LED-2.5 acquired at the injection current of 7 mA: (a) Number of cases exhibiting single-mode, dual-mode or triple-mode lasing, the inset shows the EL spectrum of single-mode random lasing; (b) distribution of wavelengths for the single-mode lasing actions.

    图 6  基于水热法和溅射法制备的ZnO薄膜的两种LED-2.5的电抽运随机激射 (a) 有效激射模式数随注入电流的变化情况; (b) 探测到的输出光功率随注入电流的变化关系曲线

    Fig. 6.  Electrically pumped random lasing actions from the two LED-2.5 respectively based on the hydrothermal and sputtered ZnO film: (a) Number of effective lasing mode as a function of the injection current; (b) curves of the detected output optical power changing with the injection current.

    图 7  (a) 基于硅衬底上ZnO薄膜的MIS结构LED在足够高的正向偏压/注入电流下的能带结构示意图; (b) ZnO薄膜内光多重散射的示意图

    Fig. 7.  (a) Schematic diagram of the energy band structure for the MIS-structured LED using ZnO film on silicon substrate under sufficiently high forward bias/injection current; (b) schematic diagram of multiple light scattering within the ZnO film.

    Baidu
  • [1]

    Cao H, Zhao Y G, Ong H C, Ho S T, Dai J Y, Wu J Y, Chang R P H 1998 Appl. Phys. Lett. 73 3656Google Scholar

    [2]

    Yu S F, Leong E S P 2004 IEEE J. Quantum Electron. 40 1186Google Scholar

    [3]

    Cao H, Zhao Y G, Ong H C, Chang R P H 1999 Phys. Rev. B 59 15107Google Scholar

    [4]

    Thareja R K, Mitra A 2000 Appl. Phys. B: Lasers Opt. 71 181Google Scholar

    [5]

    Lau S P, Yang H Y, Yu S F, Li H D, Tanemura M, Okita T, Hatano H, Hng H H 2005 Appl. Phys. Lett. 87 013104Google Scholar

    [6]

    Ursaki V V, Burlacu A, Rusu E V, Postolake V, Tiginyanu I M 2009 J. Opt. A: Pure Appl. Opt. 11 075001Google Scholar

    [7]

    Yu S F, Yuen C, Lau S P, Park W I, Yi G C 2004 Appl. Phys. Lett. 84 3241Google Scholar

    [8]

    Ma X Y, Chen P L, Li D S, Zhang Y Y, Yang D R 2007 Appl. Phys. Lett. 91 251109Google Scholar

    [9]

    Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106Google Scholar

    [10]

    Long H, Fang G J, Huang H H, Mo X M, Xia W, Dong B Z, Meng X Q, Zhao X Z 2009 Appl. Phys. Lett. 95 013509Google Scholar

    [11]

    Zhu H, Shan C X, Zhang J Y, Zhang Z Z, Li B H, Zhao D X, Yao B, Shen D Z, Fan X W, Tang Z K, Hou X H, Choy K L 2010 Adv. Mater. 22 1877Google Scholar

    [12]

    Chen P L, Ma X Y, Li D S, Zhang Y Y, Yang D R 2009 Opt. Express 17 4712Google Scholar

    [13]

    Wang C X, Jiang H T, Li Y P, Ma X Y, Yang D R 2013 J. Appl. Phys. 114 133105Google Scholar

    [14]

    Wang C X, Zhu C, Lv C Y, Li D S, Ma X Y, Yang D R 2015 Appl. Surf. Sci. 332 620Google Scholar

    [15]

    Jiang S M, Xia C T, Ji R, Pang H W, Li D S, Yang D R, Ma X Y 2024 Acs Appl. Mater. Interfaces 16 3719Google Scholar

    [16]

    Ma X Y, Pan J W, Chen P L, Li D S, Zhang H, Yang Y, Yang D R 2009 Opt. Express 17 14426Google Scholar

    [17]

    Ryglowski L, Cyprych K, Mysliwiec J 2022 Opt. Commun. 510 127939Google Scholar

    [18]

    Li Y P, Wang C X, Jin L, Ma X Y, Yang D R 2013 Appl. Phys. Lett. 102 161112Google Scholar

    [19]

    徐韵, 李云鹏, 金璐, 马向阳, 杨德仁 2013 62 084207Google Scholar

    Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207Google Scholar

    [20]

    Jiang X Y, Soukoulis C M 2000 Phys. Rev. Lett. 85 70Google Scholar

    [21]

    Sebbah P, Vanneste C 2002 Phys. Rev. B 66 144202Google Scholar

    [22]

    杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏 2012 61 114203Google Scholar

    Du W B, Leng J Y, Zhu J J, Zhou P, Xu X J, Shu B H 2012 Acta Phys. Sin. 61 114203Google Scholar

    [23]

    朱刚毅, 田沐霏, 秦飞飞, 李炳辉, 周梦谣, 高菲, 杨颖, 纪鑫, 何丝情, 王永进 2022 中国物理快报 39 123401Google Scholar

    Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, Ji X, He S Q, Wang Y J 2022 Chin. Phys. Lett. 39 123401Google Scholar

    [24]

    Liu H, Li S J, You Y Q, Wang J W, Sun J, Zhang L, Xiong L L 2023 Optik 281 170853Google Scholar

    [25]

    Wang Y Y, Xu C X, Jiang M M, Li J T, Dai J, Lu J F, Li P L 2016 Nanoscale 8 16631Google Scholar

    [26]

    魏伟华, 李木天, 刘墨南 2018 67 064203Google Scholar

    Wei W H, Li M T, Liu M N 2018 Acta Phys. Sin. 67 064203Google Scholar

    [27]

    马光辉, 张家斌, 张贺, 金亮, 王灌鑫, 徐英添 2019 中国光学 12 649Google Scholar

    Ma G H, Zhang J B, Zhang H, Jin L, Wang G X, Xu Y T 2019 Chin. Opt. 12 649Google Scholar

  • [1] 邹文静, 赵玉康, 吴有智, 张材荣. 磷光敏化荧光白色有机电致发光器件.  , doi: 10.7498/aps.74.20241294
    [2] 徐宇轩, 姚泰宇, 邓莉, 陈诗枚, 徐辰尧, 唐文轩. 薄膜微盘激射性质.  , doi: 10.7498/aps.73.20231754
    [3] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿.  , doi: 10.7498/aps.71.20211872
    [4] 李明华, 袁振洲, 许琰, 田钧方. 基于改进格子气模型的对向行人流分层现象的随机性研究.  , doi: 10.7498/aps.64.018903
    [5] 何超, 张旭, 刘智, 成步文. Si基IV族异质结构发光器件的研究进展.  , doi: 10.7498/aps.64.206102
    [6] 张然, 肖鑫泽, 吕超, 骆杨, 徐颖. 金纳米棒的飞秒激光组装研究.  , doi: 10.7498/aps.63.014206
    [7] 徐韵, 李云鹏, 金璐, 马向阳, 杨德仁. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射.  , doi: 10.7498/aps.62.084207
    [8] 谭红芳, 金涛, 屈世显. 一个全局耦合不连续映像格子中的冻结化随机图案模式.  , doi: 10.7498/aps.61.040507
    [9] 常艳玲, 张琦锋, 孙 晖, 吴锦雷. ZnO纳米线双绝缘层结构电致发光器件制备及特性研究.  , doi: 10.7498/aps.56.2399
    [10] 王 宏, 欧阳征标, 韩艳玲, 孟庆生, 罗贤达, 刘劲松. 随机性对部分随机介质激光器阈值的影响.  , doi: 10.7498/aps.56.2616
    [11] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用.  , doi: 10.7498/aps.55.1997
    [12] 李国辉, 徐得名, 周世平. 随机性参数自适应的混沌同步.  , doi: 10.7498/aps.53.379
    [13] 孙 涛, 黄锦圣, 张伟力, 柴 路, 王清月, 王克伦. ZnO粉末中无序激射现象时间分辨的研究.  , doi: 10.7498/aps.52.2127
    [14] 邓朝勇, 赵辉, 王永生. 薄膜电致发光器件电子能量的空间分布.  , doi: 10.7498/aps.50.1385
    [15] 曲凯阳, 江 亿. 均质形核结冰随机性及形核率的研究.  , doi: 10.7498/aps.49.2214
    [16] 刘祖黎, 魏合林, 王汉文, 王均震. 薄膜生长的随机模型.  , doi: 10.7498/aps.48.1302
    [17] 邢永忠, 徐躬耦. 经典混沌系统在相应于初始相干态的量子子空间中的随机性.  , doi: 10.7498/aps.48.769
    [18] 郑兴武, 凌兆芬, 吕静, 韩溥. Orion KL超水微波激射辐射的“宁静相”物理特征.  , doi: 10.7498/aps.45.1418
    [19] 徐云, 张建峡, 杜世培. 动力学系统中非线性项的跳跃随机性.  , doi: 10.7498/aps.40.33
    [20] 傅盘铭, 叶佩弦. 激光场的随机性对简并四波混频的影响.  , doi: 10.7498/aps.34.737
计量
  • 文章访问数:  378
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-14
  • 修回日期:  2024-12-18
  • 上网日期:  2025-01-06

/

返回文章
返回
Baidu
map