搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷钠原子弹性散射特性的精确计算

张计才 朱遵略 孙金锋

引用本文:
Citation:

超冷钠原子弹性散射特性的精确计算

张计才, 朱遵略, 孙金锋

Accurate calculation of elastic scattering properties of ultracold sodium atoms

Zhang Ji-Cai, Zhu Zun-Lüe, Sun Jin-Feng
PDF
导出引用
  • 基于精确的原子之间相互作用势, 系统研究了钠原子在超冷温度下的弹性散射特性, 精确计算了钠原子间碰撞时的s波散射长度、 有效力程、 p波散射长度以及束缚态数目等散射参数. 超冷温度下单重态和三重态原子间的弹性散射截面主要为s波贡献, 随着碰撞能量的增加散射截面有丰富的形状共振出现, 计算发现单重态和三重态散射截面分别存在显著的f波和i波形状共振. 应用简并内态近似方法获得了超精细态相互作用时的s波散射长度, 所得结果与精确值比较符合.
    Based on the accurate singlet and triplet state interatomic potentials for Na2, a theoretical study of elastic scattering properties of sodium atoms at ultracold temperatures is reported in this paper. The s-wave scattering length, effective range, the p-wave scattering length and the number of bound states are calculated. The singlet and triplet elastic scattering cross section between sodium aotms at ultracold temperatures are dominated by s-wave scattering, and shape resonances occur with collision energy increasing. There exist pronounced f-wave and i-wave shape resonances for the singlet and triplet cross section. In addition, s-wave scattering length is calculated by using the degenerate internet state approximation for selected hyperfine states of sodium atoms. The results are in agreement with calculated values obtained by close-coupling method.
    • 基金项目: 国家自然科学基金(批准号: 11274097) 和河南省教育厅自然科学基金(批准号: 2011A140017)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274097) and the Natural Science Foundation of Educational Bureau of Henan Province, China (Grant No. 2011A140017).
    [1]

    Weiner J, Bagnato V S, Zilio S, Julienne P S 1999 Rev. Mod. Phys. 71 1

    [2]

    Chin C, Grimm R, Julienne P S, Tiesinga E 2010 Rev. Mod. Phys. 82 125

    [3]

    Burnett K, Julienne P S, Lett P D, Tiesinga E, Williams C J 2002 Nature 416 225

    [4]

    Kagan Yu, Shlyapnikov G V, Walraven J T M 1996 Phys. Rev. Lett. 76 2670

    [5]

    Jeung G H, Hagebaum-Reignier D, Jamieson M J 2010 J. Phys. B 43 235208

    [6]

    Zhang J C, Zhu Z L, Liu Y F, Sun J F 2011 Chin. Phys. Lett. 28 123401

    [7]

    Davis K B, Mewes M-O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [8]

    McKenzie C, Denschlag J H , Häffner H , Browaeys A, de Araujo L E E, Fatemi F K, Jones K M, Simsarian J E, Cho D, Simoni A, Tiesinga E, Julienne P S, Helmerson K, Lett P D, Rolston S L, Phillips W D 2002 Phys. Rev. Lett. 88 120403

    [9]

    Côté R, Dalgarno A 1995 Phys. Rev. A 50 4827

    [10]

    Zemke C J, Stwalley W C 1994 J. Chem. Phys. 100 2661

    [11]

    van Abeelen F A, Verhaar B J 1999 Phys. Rev. A 59 578

    [12]

    Samuelis C, Tiesinga E, Laue T, Elbs M, Knöckel H, Tiemann E 2000 Phys. Rev. A 63 012710

    [13]

    Knoop S, Schuster T, Scelle R, Trautmann A, Appmeier J, Oberthaler M K 2011 Phys. Rev. A 83 042704

    [14]

    Zhang J C, Zhu Z L, Sun J F 2012 Acta Phys. Sin. 61 093401 (in Chinese) [张计才, 朱遵略, 孙金锋 2012 61 093401]

    [15]

    Dalgarno A, Rudge M R H 1965 Proc. R. Soc. London Ser. A 286 519

    [16]

    Simos T E 1997 Computers Chem. 21 125

    [17]

    Mott N F, Massey H S W 1965 The Theory of Atomic Collisons (Oxford: Clarendon)

    [18]

    Flambaum V V, Gribakin G F, Harabati C 1999 Phys. Rev. A 59 1998

    [19]

    Gribakin G F, Flambaum V V 1993 Phys. Rev. A 48 546

    [20]

    Jamieson M J, Zygelman B 2001 Phys. Rev. A 64 032703

    [21]

    Mount B J, Redshaw M, Myers E G 2010 Phys. Rev. A 82 042513

    [22]

    Jamieson M J, Sarbazi-Azad H, Ouerdane H, Jeung G-H, Lee Y S, Lee W C 2003 J. Phys. B 36 1085

    [23]

    Anderlini M, Courtade E, Cristiani M, Cossart D, Ciampini D, Sias C, Morsch O, Arimondo E 2005 Phys. Rev. A 71 061401

    [24]

    Boesten H M J M, Tsai C C, Verhaar B J, Heinzen D J 1996 Phys. Rev. Lett. 77 5194

    [25]

    Weiss S B, Bhattacharya M, Bigelow N P 2003 Phys. Rev. A 68 042708

  • [1]

    Weiner J, Bagnato V S, Zilio S, Julienne P S 1999 Rev. Mod. Phys. 71 1

    [2]

    Chin C, Grimm R, Julienne P S, Tiesinga E 2010 Rev. Mod. Phys. 82 125

    [3]

    Burnett K, Julienne P S, Lett P D, Tiesinga E, Williams C J 2002 Nature 416 225

    [4]

    Kagan Yu, Shlyapnikov G V, Walraven J T M 1996 Phys. Rev. Lett. 76 2670

    [5]

    Jeung G H, Hagebaum-Reignier D, Jamieson M J 2010 J. Phys. B 43 235208

    [6]

    Zhang J C, Zhu Z L, Liu Y F, Sun J F 2011 Chin. Phys. Lett. 28 123401

    [7]

    Davis K B, Mewes M-O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [8]

    McKenzie C, Denschlag J H , Häffner H , Browaeys A, de Araujo L E E, Fatemi F K, Jones K M, Simsarian J E, Cho D, Simoni A, Tiesinga E, Julienne P S, Helmerson K, Lett P D, Rolston S L, Phillips W D 2002 Phys. Rev. Lett. 88 120403

    [9]

    Côté R, Dalgarno A 1995 Phys. Rev. A 50 4827

    [10]

    Zemke C J, Stwalley W C 1994 J. Chem. Phys. 100 2661

    [11]

    van Abeelen F A, Verhaar B J 1999 Phys. Rev. A 59 578

    [12]

    Samuelis C, Tiesinga E, Laue T, Elbs M, Knöckel H, Tiemann E 2000 Phys. Rev. A 63 012710

    [13]

    Knoop S, Schuster T, Scelle R, Trautmann A, Appmeier J, Oberthaler M K 2011 Phys. Rev. A 83 042704

    [14]

    Zhang J C, Zhu Z L, Sun J F 2012 Acta Phys. Sin. 61 093401 (in Chinese) [张计才, 朱遵略, 孙金锋 2012 61 093401]

    [15]

    Dalgarno A, Rudge M R H 1965 Proc. R. Soc. London Ser. A 286 519

    [16]

    Simos T E 1997 Computers Chem. 21 125

    [17]

    Mott N F, Massey H S W 1965 The Theory of Atomic Collisons (Oxford: Clarendon)

    [18]

    Flambaum V V, Gribakin G F, Harabati C 1999 Phys. Rev. A 59 1998

    [19]

    Gribakin G F, Flambaum V V 1993 Phys. Rev. A 48 546

    [20]

    Jamieson M J, Zygelman B 2001 Phys. Rev. A 64 032703

    [21]

    Mount B J, Redshaw M, Myers E G 2010 Phys. Rev. A 82 042513

    [22]

    Jamieson M J, Sarbazi-Azad H, Ouerdane H, Jeung G-H, Lee Y S, Lee W C 2003 J. Phys. B 36 1085

    [23]

    Anderlini M, Courtade E, Cristiani M, Cossart D, Ciampini D, Sias C, Morsch O, Arimondo E 2005 Phys. Rev. A 71 061401

    [24]

    Boesten H M J M, Tsai C C, Verhaar B J, Heinzen D J 1996 Phys. Rev. Lett. 77 5194

    [25]

    Weiss S B, Bhattacharya M, Bigelow N P 2003 Phys. Rev. A 68 042708

  • [1] 李炅远, 孟举, 王克栋. C4-离子的低能电子弹性散射研究:共振态与同分异构.  , 2024, 73(24): . doi: 10.7498/aps.73.20241377
    [2] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响.  , 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [3] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析.  , 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [4] 张计才, 朱遵略, 孙金锋. 超冷温度下钾和铯原子间弹性散射特性的精确计算.  , 2012, 61(9): 093401. doi: 10.7498/aps.61.093401
    [5] 邓一兵, 王世来. 动量空间中能质子-12C弹性散射截面和自旋量的研究.  , 2007, 56(1): 137-142. doi: 10.7498/aps.56.137
    [6] 顾运厅, 冯禄燕, 陶军全, 黄天衡, 罗 春, 马维兴. 46.8MeV的p+12C非弹性散射.  , 2005, 54(10): 4666-4668. doi: 10.7498/aps.54.4666
    [7] 刘义保, 庞文宁, 丁海兵, 尚仁成. 电子散射的钠原子受激态取向参数研究.  , 2005, 54(11): 5121-5125. doi: 10.7498/aps.54.5121
    [8] 凤任飞, 武淑兰, 暨 青, 朱林繁, 刘小井, 徐克尊. 惰性气体原子对2500eV电子的绝对弹性散射微分截面.  , 1998, 47(8): 1272-1277. doi: 10.7498/aps.47.1272
    [9] 沈皓, 承焕生, 汤家镛, 杨福家. 碳对α的非卢瑟福背散射截面研究.  , 1994, 43(10): 1569-1575. doi: 10.7498/aps.43.1569
    [10] 朱沛然, 江伟林, 徐天冰, 殷士端. 硅化物薄膜的质子弹性散射分析.  , 1992, 41(12): 2049-2054. doi: 10.7498/aps.41.2049
    [11] 陈桂英, 成之绪, 吴享南, 阮景辉. 钯氢的热中子非弹性散射.  , 1980, 29(2): 257-259. doi: 10.7498/aps.29.257
    [12] 张禹顺, 李扬国. 高能质子与原子核的弹性和非弹性散射.  , 1977, 26(5): 449-454. doi: 10.7498/aps.26.449
    [13] 曹昌祺, 秦旦华. 电子-质子的深度非弹性散射(Ⅱ).  , 1976, 25(4): 308-315. doi: 10.7498/aps.25.308
    [14] 曹昌祺, 秦旦华. 电子-质子的深度非弹性散射(Ⅰ).  , 1976, 25(3): 197-214. doi: 10.7498/aps.25.197
    [15] 胡宁. 层子摸型和深度非弹性散射.  , 1975, 24(6): 458-460. doi: 10.7498/aps.24.458
    [16] 刘炳东, 何国柱. 用高能核子非弹性散射研究核力有效势.  , 1966, 22(5): 569-579. doi: 10.7498/aps.22.569
    [17] 章思俊. π-N弹性散射的第二共振峰.  , 1964, 20(3): 216-226. doi: 10.7498/aps.20.216
    [18] 方励之, 顾世杰. 有缺陷铁磁体的中子非弹性散射.  , 1963, 19(10): 673-681. doi: 10.7498/aps.19.673
    [19] 罗辽复, 徐行. 关于K+介子和核子的弹性散射.  , 1962, 18(6): 291-297. doi: 10.7498/aps.18.291
    [20] 金星南. 高能电子对原子核弹性散射的一个近似计算法.  , 1956, 12(5): 447-458. doi: 10.7498/aps.12.447
计量
  • 文章访问数:  6539
  • PDF下载量:  495
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-10
  • 修回日期:  2012-08-03
  • 刊出日期:  2013-01-05

/

返回文章
返回
Baidu
map