搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

零维系统模型改进及其对EAST稳态运行区的分析和预测

于明生 钱金平 丁斯晔 任启龙 叶阳 万宝年

引用本文:
Citation:

零维系统模型改进及其对EAST稳态运行区的分析和预测

于明生, 钱金平, 丁斯晔, 任启龙, 叶阳, 万宝年

Improvement of zero-dimensional system model and its analysis and prediction of steady-state operating regime on EAST

Yu Ming-Sheng, Qian Jin-Ping, Ding Si-Ye, Ren Qi-Long, Ye Yang, Wan Bao-Nian
PDF
HTML
导出引用
  • 零维系统模型已广泛应用于下一代托卡马克装置设计以及聚变反应堆等离子体性能的预测和分析, 但普遍采用物理近似和经验公式会导致较大的系统性误差. 本文通过引入等离子体平衡程序使主要等离子体分布参数及其计算基于磁面信息, 引入Sauter模型的自举电流系数与碰撞率变化关系改进自举电流计算, 利用EAST上的实验结果对改进后的模型进行验证, 零维系统模型计算结果与动理学平衡分析结果基本符合. 利用改进模型从已有实验结果出发, 对EAST上实现500 kA等离子体电流的稳态、长脉冲运行区所需要的加热/电流驱动功率及其能够达到的归一化比压进行了分析和预测. 计算结果表明, EAST在7.0—9.5 MW加热/驱动功率, 约束改善因子$ {H}_{98} $为1.25—1.35, 归一化密度$ {f}_{{\rm{n}}{\rm{G}}} $约为0.9的参数范围内可以实现500 kA等离子体电流且自举电流份额在50%以上的稳态运行; 9.5 MW加热/驱动功率, $ {H}_{98} $为1.0—1.4, $ {f}_{{\rm{n}}{\rm{G}}} $为0.8—1.0的参数范围可以实现较高性能的长脉冲或稳态运行. 综合来说, 提升等离子体约束性能, 可在较低的加热/驱动功率下实现同样等离子体参数的完全非感应运行, 扩展等离子体运行区, 是实现高参数等离子体稳态运行最为有效的途径.
    The zero-dimensional system model has been widely used for predicting and analyzing plasma performance in fusion reactors and designing next-generation tokamaks. These models can quickly scan and calculate various parameter, and can be used for the design of device reference operation point and preparation for more accurate one-dimensional numerical simulations. They can also be used to predict device operational parameters and heating/ current drive conditions, providing a quick reference for experimental design. However, relying on physical approximations and empirical formulas can lead to significant systematic errors. In this work we introduce a plasma equilibrium program to obtain the main plasma profile parameters and their calculations based on magnetic surface information. The bootstrap current calculation is improved by introducing the relationship between the bootstrap current coefficient of the Sauter model and the collision rate change. The improved model is validated by using experimental results from EAST, and the results of the zero-dimensional system model calculations are found to be consistent with the results of kinetic equilibrium analysis. Based on the improved model and existing experimental results, the required heating/current drive power and achievable normalized beta for steady-state, long-pulse operation of the 500 kA plasma current on EAST are analyzed and predicted. The calculation results show that EAST can achieve steady-state operation at the 500 kA plasma current with bootstrap current fraction over 50% in the parameter range of 7.0–9.5 MW heating/driving power, $ {H}_{98} $is 1.25–1.35, and $ {f}_{{\rm{n}}{\rm{G}}} $~0.9. Additionally, to maintain the total non-inductive current, the total heating/current drive power needs to be highly sensitive to plasma confinement and density, which is the most effective way to increase the bootstrap current fraction and reduce the peak heat loads on the divertor. Improving plasma confinement is the most effective way to achieve high bootstrap current fraction and reduce the peak heat load on the divertor. In this work, we also analyze the effect of heating power ratio on the bootstrap current, showing that adjusting the power ratio can change the bootstrap current fraction, and we further analyze the long-pulse operating region of EAST with a plasma current of 500 kA. In the range of 9.5 MW total heating/current driving power, $ {H}_{98} $ is 1.0–1.4, and normalized electron density $ {f}_{{\rm{n}}{\rm{G}}} $ is 0.8–1.0, high-performance long-pulse or fully non-inductive steady-state operation can be achieved, supporting the research on the physics of ITER and CFETR steady-state operation modes. In general, improving the plasma confinement performance can achieve fully non-inductive operation at lower heating/driving power while maintaining the same plasma parameters, and expand the plasma operating regime, which is the most effective way to achieve high-parameter steady-state operation of the plasma.
      通信作者: 钱金平, jpqian@ipp.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11975274)资助的课题.
      Corresponding author: Qian Jin-Ping, jpqian@ipp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975274).
    [1]

    Chan V S, Stambaugh R D, Garofalo A M, Chu M S, Fisher R K, Greenfield C M, Humphreys D A, Lao L L, Leuer J A, Petrie T W, Prater R, Staebler G M, Snyder P B, St John H E, Turnbull A D, Wong C P C, Van Zeeland M A 2010 Fusion Sci. Technol. 57 66Google Scholar

    [2]

    Johner J 2011 Fusion Sci. Technol. 59 308Google Scholar

    [3]

    Kovari M, Kemp R, Lux H, Knight P, Morris J, Ward D J 2014 Fusion Eng. Des. 89 3054Google Scholar

    [4]

    Wan B N, Ding S Y, Qian J P, Li G Q, Xiao B J, Xu G S 2014 IEEE Trans. Plasma Sci. 42 495Google Scholar

    [5]

    Ding S Y, Wan B N, Wang L, Sun Y W, Lyu B 2016 IEEE Trans. Plasma Sci. 44 2502Google Scholar

    [6]

    Zohm H 2010 Fusion Sci. Technol. 58 613Google Scholar

    [7]

    Zohm H 2019 J. Fusion Energy 38 3Google Scholar

    [8]

    Stambaugh R D, Lao L L, Lazarus E A 1992 Nucl. Fusion 32 1642Google Scholar

    [9]

    Loarte A, Bosch S, Chankin A, Clement S, Herrmann A, Hill D, Itami K, Lingertat J, Lipschultz B, McCormick K, Monk R, Porter G D, Shimada M, Sugihara M 1999 J. Nucl. Mater. 266–269 587

    [10]

    Liu-Lin Y R, Stambaugh R D 2004 Nucl. Fusion 44 548Google Scholar

    [11]

    Greenwald M, Terry J L, Wolfe S M, Ejima S, Bell M G, Kaye S M, Neilson G H 1988 Nucl. Fusion 28 2199Google Scholar

    [12]

    Liu-Lin Y R, Chan V, Prater R 2003 Phys. Plasmas 10 4064Google Scholar

    [13]

    Tonon G 1994 ISPP Workshop on Tokamak Concept Improvement Varenna, Italy, August 29–September 3, 1994 p31

    [14]

    Fowler R, Holmes J, Rome J 1979 NFREYA: a Monte Carlo Beam Deposition Code for Noncircular Tokamak Plasmas Report

    [15]

    ITER E 1999 Nucl. Fusion 39 2175Google Scholar

    [16]

    Yushmanov P N, Takizuka T, Riedel K S, Kardaun O J W F, Cordey J G, Kaye S M, Post D E 1990 Nucl. Fusion 30 1999Google Scholar

    [17]

    Dragojlovic Z, Raffray A R, Najmabadi F, Kessel C, Waganer L, El-Guebaly L, Bromberg L 2010 Fusion Eng. Des. 85 243Google Scholar

    [18]

    Grad H, Rubin H 1958 Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (United Nations Geneva)

    [19]

    Shafranov V 1958 Soviet Physics JETP 6 1013

    [20]

    Sauter O, Angioni C, Liu-Lin Y R 1999 Phys. Plasmas 6 2834Google Scholar

    [21]

    Qian J, Wan B, Lao L L, Shen B, Sabbagh S A, Sun Y, Liu D, Xiao B, Ren Q, Gong X, Li J 2009 Plasma Sci. Technol. 11 142Google Scholar

    [22]

    Li G Q, Ren Q L, Qian J P, Lao L L, Ding S Y, Chen Y J, Liu Z X, Lu B, Zang Q 2013 Plasma Phys. Controlled Fusion 55 125008Google Scholar

    [23]

    朱翔 2018 博士学位论文 (合肥: 中国科学技术大学)

    Zhu X 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [24]

    Stambaugh R D, Chan V S, Garofalo A M, Sawan M, Humphreys D A, Lao L L, Leuer J A, Petrie I W, Prater R, Snyder P B, Smith J P, Wong C P C 2011 Fusion Sci. Technol. 59 279Google Scholar

    [25]

    Sauter O, Angioni C, Lin-Liu Y R 2002 Phys. Plasmas 9 5140Google Scholar

    [26]

    张家源 2022 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J Y 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [27]

    Zhang J, Qian J, Gong X, Zhang B, Wu M, Li M, Zang Q, Zhu X, Lyu B, Liu H, Liang R, Jia T, Hu Y, Wang Z 2022 Fusion Eng. Des. 184 113283Google Scholar

    [28]

    Hender T C, Wesley J C, Bialek J, et al. 2007 Nucl. Fusion 47 S128Google Scholar

    [29]

    Wan B N, Liang Y, Gong X Z, et al. 2019 Nucl. Fusion 59 112003Google Scholar

    [30]

    Wan B N, Gong X Z, Liang Y, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zhang B, Xia T Y, Huang J, Ding R, Zhang T, Zuo G Z, Sun Z, Zeng L, Zhang X J, Zang Q, Lyu B, Garofalo A M, Li G Q, Li K D, Yang Q Q, for the E T, Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [31]

    Gong X, Garofalo A M, Huang J, et al. 2019 Nucl. Fusion 59 086030Google Scholar

    [32]

    Zhuang G, Li G Q, Li J, Wan Y X, Liu Y, Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P, Xiao B J, the C D T 2019 Nucl. Fusion 59 112010Google Scholar

    [33]

    Pitts R A, Bonnin X, Escourbiac F, Frerichs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansky V, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, De Temmerman G, Veselova I, Wiesen S 2019 Nucl. Mater. Energy 20 100696Google Scholar

    [34]

    Loarte A, Lipschultz B, Kukushkin A 2007 Nucl. Fusion 47 s203Google Scholar

  • 图 1  ONETWO动理学平衡分析[26] (红色线条)和零维系统模型(蓝色线条)分别对EAST炮号#90615在6540 ms时刻用Sauter模型计算的自举电流密度分布

    Fig. 1.  The ONETWO kinetic equilibrium analysis[26] (red line) and the zero-dimensional system model (blue line) respectively calculated the bootstrap current density profile of EAST shot #90615 at 6540 ms using the Sauter model.

    图 2  对Sauter模型$ {\mathcal{L}}_{31} $部分与等离子体碰撞率的关系拟合, 黑线为$ {\mathcal{L}}_{31} $(来自文献[20]), 红线为拟合曲线

    Fig. 2.  Fitting the relationship between the Sauter model $ {\mathcal{L}}_{31} $ part and the collision rate of the plasma, the black line represents $ {\mathcal{L}}_{31} $ (from Ref[20]), and the red line represents the fitting curve.

    图 3  EAST在500 kA等离子体电流在不同密度条件及不同能量约束改善因子下达到完全稳态运行所需要的辅助加热功率及所对应的自举电流份额

    Fig. 3.  The auxiliary heating power required for EAST to achieve steady-state operation under different plasma current densities and different improvement factors of energy confinement, as well as the corresponding fraction of bootstrap current for each condition.

    图 4  对应图3中Case A, Case B, Case C三点的总的偏滤器热负荷以及内外偏滤器靶板峰值热负荷情况 (MW/m2)

    Fig. 4.  The total divertor heat load and peak heat load on the inner and outer divertor target plates for points Case A, Case B, and Case C in Fig. 3 (unit: MW/m2).

    图 5  EAST在500 kA等离子体电流9.5 MW加热功率下, 不同的电子密度与能量约束改善因子时的长脉冲运行能力

    Fig. 5.  EAST’s long-pulse operational capability under different electron densities and energy confinement improvement factors at 9.5 MW heating power and a plasma current of 500 kA.

    表 1  零维系统模型计算所对应的实验条件

    Table 1.  Experimental conditions corresponding to the zero-dimensional system model calculation.

    炮号#89790#90615#101449#94437
    辅助加热
    功率/MW
    离子回旋0.210.280.530
    电子回旋0.630.630.980.63
    低杂波1.31.781.41.08
    中性束0003.7
    总功率/MW2.142.692.915.41
    电子弦密度/(1019 m–3)3.84.74.14.5
    归一化密度$ {f}_{{\rm{n}}{\rm{G}}} $0.650.810.600.73
    等离子体电流/kA369370363366
    下载: 导出CSV

    表 2  模型计算结果与磁平衡反演/动理学平衡分析结果对比

    Table 2.  Comparison between the model calculation results and the magnetic equilibrium inversion/kinetic equilibrium analysis results.

    炮号物理量磁平衡反
    演/动理学
    平衡结果
    零维系统
    模型计算
    误差%
    #89790储能/kJ1751646.3
    $ {\beta }_{{\rm{N}}} $1.41.40.7
    $ {\beta }_{{\rm{P}}} $1.641.602.4
    $ {q}_{95} $6.56.155.4
    $ {f}_{{\rm{b}}{\rm{s}}} $0.40.437.5
    #90615储能/kJ1951864.6
    $ {\beta }_{{\rm{N}}} $1.571.476.4
    $ {\beta }_{{\rm{P}}} $1.81.884.4
    $ {q}_{95} $6.46.97.8
    $ {f}_{{\rm{b}}{\rm{s}}} $0.490.52.0
    #101449储能/kJ2312185.6
    $ {\beta }_{{\rm{N}}} $1.81.752.8
    $ {\beta }_{{\rm{P}}} $2.622.3410.7
    $ {q}_{95} $8.237.410.1
    $ {f}_{{\rm{b}}{\rm{s}}} $0.440.476.8
    #94437储能/kJ2432286.2
    $ {\beta }_{{\rm{N}}} $1.971.894.1
    $ {\beta }_{{\rm{P}}} $2.312.310.3
    $ {q}_{95} $6.927.24.0
    $ {f}_{{\rm{b}}{\rm{s}}} $0.450.498.9
    下载: 导出CSV

    表 3  Case A完全非感应运行条件下不同的功率配比对应的自举电流份额

    Table 3.  The fraction of bootstrap current corresponding to different power ratios under fully non-inductive operation conditions for Case A.

    离子回旋/MW低杂波/MW总加热/MW自举电流份额
    04.286.280.485
    0.54.106.600.492
    1.03.956.950.497
    1.53.857.350.504
    2.03.757.750.513
    2.53.658.150.520
    3.03.518.510.526
    3.53.408.900.533
    4.03.309.300.539
    下载: 导出CSV
    Baidu
  • [1]

    Chan V S, Stambaugh R D, Garofalo A M, Chu M S, Fisher R K, Greenfield C M, Humphreys D A, Lao L L, Leuer J A, Petrie T W, Prater R, Staebler G M, Snyder P B, St John H E, Turnbull A D, Wong C P C, Van Zeeland M A 2010 Fusion Sci. Technol. 57 66Google Scholar

    [2]

    Johner J 2011 Fusion Sci. Technol. 59 308Google Scholar

    [3]

    Kovari M, Kemp R, Lux H, Knight P, Morris J, Ward D J 2014 Fusion Eng. Des. 89 3054Google Scholar

    [4]

    Wan B N, Ding S Y, Qian J P, Li G Q, Xiao B J, Xu G S 2014 IEEE Trans. Plasma Sci. 42 495Google Scholar

    [5]

    Ding S Y, Wan B N, Wang L, Sun Y W, Lyu B 2016 IEEE Trans. Plasma Sci. 44 2502Google Scholar

    [6]

    Zohm H 2010 Fusion Sci. Technol. 58 613Google Scholar

    [7]

    Zohm H 2019 J. Fusion Energy 38 3Google Scholar

    [8]

    Stambaugh R D, Lao L L, Lazarus E A 1992 Nucl. Fusion 32 1642Google Scholar

    [9]

    Loarte A, Bosch S, Chankin A, Clement S, Herrmann A, Hill D, Itami K, Lingertat J, Lipschultz B, McCormick K, Monk R, Porter G D, Shimada M, Sugihara M 1999 J. Nucl. Mater. 266–269 587

    [10]

    Liu-Lin Y R, Stambaugh R D 2004 Nucl. Fusion 44 548Google Scholar

    [11]

    Greenwald M, Terry J L, Wolfe S M, Ejima S, Bell M G, Kaye S M, Neilson G H 1988 Nucl. Fusion 28 2199Google Scholar

    [12]

    Liu-Lin Y R, Chan V, Prater R 2003 Phys. Plasmas 10 4064Google Scholar

    [13]

    Tonon G 1994 ISPP Workshop on Tokamak Concept Improvement Varenna, Italy, August 29–September 3, 1994 p31

    [14]

    Fowler R, Holmes J, Rome J 1979 NFREYA: a Monte Carlo Beam Deposition Code for Noncircular Tokamak Plasmas Report

    [15]

    ITER E 1999 Nucl. Fusion 39 2175Google Scholar

    [16]

    Yushmanov P N, Takizuka T, Riedel K S, Kardaun O J W F, Cordey J G, Kaye S M, Post D E 1990 Nucl. Fusion 30 1999Google Scholar

    [17]

    Dragojlovic Z, Raffray A R, Najmabadi F, Kessel C, Waganer L, El-Guebaly L, Bromberg L 2010 Fusion Eng. Des. 85 243Google Scholar

    [18]

    Grad H, Rubin H 1958 Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (United Nations Geneva)

    [19]

    Shafranov V 1958 Soviet Physics JETP 6 1013

    [20]

    Sauter O, Angioni C, Liu-Lin Y R 1999 Phys. Plasmas 6 2834Google Scholar

    [21]

    Qian J, Wan B, Lao L L, Shen B, Sabbagh S A, Sun Y, Liu D, Xiao B, Ren Q, Gong X, Li J 2009 Plasma Sci. Technol. 11 142Google Scholar

    [22]

    Li G Q, Ren Q L, Qian J P, Lao L L, Ding S Y, Chen Y J, Liu Z X, Lu B, Zang Q 2013 Plasma Phys. Controlled Fusion 55 125008Google Scholar

    [23]

    朱翔 2018 博士学位论文 (合肥: 中国科学技术大学)

    Zhu X 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [24]

    Stambaugh R D, Chan V S, Garofalo A M, Sawan M, Humphreys D A, Lao L L, Leuer J A, Petrie I W, Prater R, Snyder P B, Smith J P, Wong C P C 2011 Fusion Sci. Technol. 59 279Google Scholar

    [25]

    Sauter O, Angioni C, Lin-Liu Y R 2002 Phys. Plasmas 9 5140Google Scholar

    [26]

    张家源 2022 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J Y 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [27]

    Zhang J, Qian J, Gong X, Zhang B, Wu M, Li M, Zang Q, Zhu X, Lyu B, Liu H, Liang R, Jia T, Hu Y, Wang Z 2022 Fusion Eng. Des. 184 113283Google Scholar

    [28]

    Hender T C, Wesley J C, Bialek J, et al. 2007 Nucl. Fusion 47 S128Google Scholar

    [29]

    Wan B N, Liang Y, Gong X Z, et al. 2019 Nucl. Fusion 59 112003Google Scholar

    [30]

    Wan B N, Gong X Z, Liang Y, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zhang B, Xia T Y, Huang J, Ding R, Zhang T, Zuo G Z, Sun Z, Zeng L, Zhang X J, Zang Q, Lyu B, Garofalo A M, Li G Q, Li K D, Yang Q Q, for the E T, Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [31]

    Gong X, Garofalo A M, Huang J, et al. 2019 Nucl. Fusion 59 086030Google Scholar

    [32]

    Zhuang G, Li G Q, Li J, Wan Y X, Liu Y, Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P, Xiao B J, the C D T 2019 Nucl. Fusion 59 112010Google Scholar

    [33]

    Pitts R A, Bonnin X, Escourbiac F, Frerichs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansky V, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, De Temmerman G, Veselova I, Wiesen S 2019 Nucl. Mater. Energy 20 100696Google Scholar

    [34]

    Loarte A, Lipschultz B, Kukushkin A 2007 Nucl. Fusion 47 s203Google Scholar

  • [1] 杨栋超, 易立志, 丁林杰, 刘敏, 朱丽娅, 许云丽, 何雄, 沈顺清, 潘礼庆, JohnQ. Xiao. 铁磁绝缘体中磁振子的非平衡稳态输运性质.  , 2024, 73(14): 147101. doi: 10.7498/aps.73.20240498
    [2] 钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真. 大气压非平衡等离子体甲烷干法重整零维数值模拟.  , 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [3] 韩小英, 李凌霄, 戴振生, 郑无敌, 古培俊, 吴泽清. 一个快速模拟热稠密非平衡等离子体的碰撞辐射模型.  , 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [4] 李诗尧, 于明. 固体炸药爆轰的一种考虑热学非平衡的反应流动模型.  , 2018, 67(21): 214704. doi: 10.7498/aps.67.20172501
    [5] 刘瑞芬, 惠治鑫, 熊科诏, 曾春华. 表面催化反应模型中关联噪声诱导非平衡相变.  , 2018, 67(16): 160501. doi: 10.7498/aps.67.20180250
    [6] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡.  , 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [7] 叶晶晶, 李克平, 金新民. 基于跟驰模型列车运行优化控制模拟研究.  , 2014, 63(7): 070202. doi: 10.7498/aps.63.070202
    [8] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究.  , 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [9] 张珈铭, 徐晓栋, 孙保华. 基于(p,)-(,p)平衡近似的快质子俘获过程模型及其应用.  , 2013, 62(13): 132501. doi: 10.7498/aps.62.132501
    [10] 付东, 王学敏, 刘建岷. 超临界二氧化碳和模型共聚物的相平衡和成核性质研究.  , 2009, 58(5): 3022-3027. doi: 10.7498/aps.58.3022
    [11] 张开成. Sherrington-Kirkpatric自旋玻璃模型的非平衡态性质.  , 2009, 58(8): 5673-5678. doi: 10.7498/aps.58.5673
    [12] 刘素华, 唐驾时. 四维Qi系统零平衡点的Hopf分岔反控制.  , 2008, 57(10): 6162-6168. doi: 10.7498/aps.57.6162
    [13] 冯士德, 钟霖浩, 高守亭, Dong Ping. 格子Boltzmann模型平衡分布边界条件和多棱柱排列渗流流场的数值模拟.  , 2007, 56(3): 1238-1244. doi: 10.7498/aps.56.1238
    [14] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型.  , 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [15] 牟宗信, 李国卿, 车德良, 黄开玉, 柳 翠. 非平衡磁控溅射沉积系统伏安特性模型研究.  , 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
    [16] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在.  , 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [17] 巩稼民, 刘 娟, 方 强, 王永昌. 密集波分复用石英光纤通信系统中受激Raman散射的稳态分析模型.  , 2000, 49(7): 1287-1291. doi: 10.7498/aps.49.1287
    [18] 杨援, 戴建华, 张洪钧. 光学双稳态离散模型的动力学行为.  , 1994, 43(5): 699-706. doi: 10.7498/aps.43.699
    [19] 李富斌. 用细胞自动机方法构造非平衡相变模型.  , 1992, 41(11): 1837-1841. doi: 10.7498/aps.41.1837
    [20] 严士健, 李占柄. 非平衡系统的概率模型及Master方程的建立.  , 1980, 29(2): 139-152. doi: 10.7498/aps.29.139
计量
  • 文章访问数:  2985
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2023-04-04
  • 上网日期:  2023-04-11
  • 刊出日期:  2023-06-05

/

返回文章
返回
Baidu
map