搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熵调控的Gd2Co17金属间化合物的结构与室温磁性能

董霄鹏 赵兴 殷林瀚 彭思琦 王京南 郭永权

引用本文:
Citation:

熵调控的Gd2Co17金属间化合物的结构与室温磁性能

董霄鹏, 赵兴, 殷林瀚, 彭思琦, 王京南, 郭永权

Structures and room-temperature magnetic properties of entropy-modulated Gd2Co17 based intermetallic compounds

Dong Xiao-Peng, Zhao Xing, Yin Lin-Han, Peng Si-Qi, Wang Jing-Nan, Guo Yong-Quan
PDF
HTML
导出引用
  • 熵调控材料因其独特的设计理念和优于传统合金的性能而受到广泛关注. 本文将熵调控的设计理念引入金属间化合物中, 设计并通过真空电弧熔炼的方法制备了一系列熵调控的Gd2Co17金属间化合物, 期望通过熵调控的方法来稳定其结构, 改善其磁性能. 应用热力学理论预言熵调控的Gd2Co17系列金属间化合物具有稳定的单相, 其单相性被X射线衍射实验所证实. 通过组态熵调控原子尺寸因素, 获得了菱方和六方两种晶体结构. 熵调控改善了Gd2Co17系列金属间化合物的室温磁性能, 过渡族金属位的熵调控使磁各向异性发生由基面到易轴的转变, 稀土位的熵调控有助于提高其矫顽力, 所有熵调控样品室温时的饱和磁矩均比二元Gd2Co17显著提升, 可能是稀土或过渡族金属子晶格磁矩无序取向削弱了金属间化合物中稀土的4f电子与过渡族金属的3d电子磁矩之间的反平行交换作用所导致. 磁价模型研究表明: 熵调控设计导致Gd2Co17系列金属间化合物中$ {N}_{{\rm{s}}{\rm{p}}}^{\uparrow } $(未极化$ {\rm{s}}{\rm{p}} $导带中的电子数目)增加, 增加了导带电子作为媒介引发过渡族金属子晶格的3d电子与稀土的4f 电子之间强磁交换作用的概率, 形成以游动的s电子为媒介, 使磁性原子中局域的4f电子自旋与其近邻磁性原子的3d电子自旋产生交换作用, 进而表现出饱和磁矩增大. 本研究有助于提高熵调控的Gd2Co17的潜在应用性.
    The entropy-modulated material has been a hot topic due to its unique design concept and excellent properties. However, previous studies of entropy-modulated materials mainly focused on the alloys with simple face-centered cubic, or body-centered cubic, or hexagonal close-packed structures. In this work, the design concept of entropy-modulation is introduced into Gd2Co17 based intermetallic compound, and the effect of high configuration entropy on the structural stabilization and room-temperature magnetic properties of Gd2Co17 based intermetallic compound are studied systematically.The samples are prepared by vacuum Arc melting technology in an ultrahigh-purity Ar atmosphere and followed by annealing at 1000 ℃ for 8 days and finally by quenching in cool water. The fine powders are prepared by grinding the ingots in an agate mortar. The powder XRD and SEM-EDS are used to check the crystal structures and chemical compositions. To study the magnetic properties, the column-like samples are prepared by mixing the fine powder and epoxy with a weight ratio of 1∶1, and then aligned under an applied field of 1 T at room temperature.The high configuration entropy is found to play an important role in the structural stabilization and magnetic properties of Gd2Co17 based medium- and high-entropy intermetallic compounds. The XRD patterns and Rietveld structural refinement results confirm that all the samples are single-phase. The structure depends on the effective atomic radius RA, the structure of entropized Gd2Co17 based intermetallics can be stabilized into rhombohedral Th2Zn17-type with RA > 1.416 or hexagonal Th2Ni17-type with RA < 1.4105. According to thermodynamic calculations of entropized Gd2Co17 intermeatllics, the atomic radius difference Δr ranges from 0.55% to 1.81%, and the mixing enthalpy $ \Delta {{\boldsymbol{H}}}_{{\rm{m}}{\rm{i}}{\rm{x}}} $ is corresponding to 0 for the rare earth site, –4 to –1 kJ/mol for the transition metal site, and –8.54 to –5.13 kJ/mol between rare earth and transition metal sites. It is suggested that all the thermodynamic parameters meet the criteria for the formation of single-phase medium- and high-entropy intermetallic compounds. The configuration entropy changes from 0.69R to 1.39R. The room temperature magnetic properties are significantly improved by the modulation of entropized design at rare earth and transition metal sublattices. The entropization enhances the saturation moments of all samples, which can be explained with a modified magnetic valence model. The value of ${N}_{{\rm{sp}}}^{\uparrow }$ (the number of the electrons in the unpolarized sp conduction bands) increases from 0.3 to 0.4 after entropization, the indirect interaction between rare earth and transition metal sublattice is increased, the spin moment of s conducting electron as a medium of two sublattices is enhanced, and the magnetic moment is increased. The entropization also induces magnetic anisotropy to transform from basal plane to easy axis for the entropized design at transition metal sublattice and the coercivity of rare earth to increase.
      通信作者: 郭永权, yqguo@ncepu.edu.cn
      Corresponding author: Guo Yong-Quan, yqguo@ncepu.edu.cn
    [1]

    Yin L H, Guo Y Q, Guo X P 2022 Inorg. Chem. 61 2402Google Scholar

    [2]

    Shen B G, Cheng Z H, Liang B, Guo H Q, Zhang J X, Gong H Y, Wang F W, Yan Q W, Zhan W S 1995 Appl. Phys. Lett. 67 1621Google Scholar

    [3]

    Coey J M D, Sun H 1990 J. Magn. Magn. Mater. 87 L251Google Scholar

    [4]

    易健宏, 彭元东 2004 稀有金属材料与工程 33 337Google Scholar

    Yi J H, Peng Y D 2004 Rare Metal Mat. Eng. 33 337Google Scholar

    [5]

    Cheng Z H, Shen B G, Liang B, Zhang J X, Wang F W, Zhang S Y, Zhao J G, Zhan W S 1995 J. Appl. Phys. 78 1385Google Scholar

    [6]

    Hasebe A, Imai T, Otsuki E 1994 Electr. Eng. Jpn. 114 15Google Scholar

    [7]

    Girt E, Altounian Z, Swainson I P 1997 Phys. B Condens. Matter 234 637Google Scholar

    [8]

    Girt E, Guillot M, Swainson I P, Krishnan K M, Altounian Z, Thomas G 2000 J. Appl. Phys. 87 5323Google Scholar

    [9]

    Liang J K, Huang Q, Santoro A, Liu Q L, Chen X L 1999 J. Appl. Phys. 86 1226Google Scholar

    [10]

    Wang S, Fang Y K, Song K K, Zhu X Y, Wang L, Sun W, Pan W, Zhu M G, Li W 2020 J. Rare Earths 38 1224Google Scholar

    [11]

    文雪萍, 易健宏, 彭元东, 李丽娅, 叶途明, 夏庆林 2005 粉末冶金材料科学与工程 10 236Google Scholar

    Wen X P, Yi J H, Peng Y D, Li L Y, Ye T M, Xia Q L 2005 Mater. Sci. Eng. Powder Metall. 10 236Google Scholar

    [12]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [13]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375 213Google Scholar

    [14]

    申天展, 宋海洋, 安敏荣 2021 70 186201Google Scholar

    Shen T Z, Song H Y, An M R 2021 Acta Phys. Sin. 70 186201Google Scholar

    [15]

    Zhou N X, Jiang S C, Huang T, Qin M D, Hu T, Luo J 2019 Sci. Bull. 64 856Google Scholar

    [16]

    Zhang Y, Yang X, Liaw P K 2012 JOM 64 830Google Scholar

    [17]

    Wang J, Zhang Y, Xiao H X, Li L Y, Kou H C, Li J S 2019 Mater. Lett. 240 250Google Scholar

    [18]

    鲁一荻, 张骁勇, 侯硕, 何卫锋, 王辉, 吕昭平 2021 稀有金属材料与工程 50 333

    Lu Y D, Zhang X Y, Hou S, He W F, Wang H, Lü Z P 2021 Rare Metal Mat. Eng. 50 333

    [19]

    李蕊轩, 张勇 2017 66 177101Google Scholar

    Li R X, Zhang Y 2017 Acta Phys. Sin. 66 177101Google Scholar

    [20]

    Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S, Maria J P 2015 Nat. Commun. 6 8485Google Scholar

    [21]

    Yadav T P, Mukhopadhyay S, Mishra S S, Mukhopadhyay N K, Srivastava O N 2017 Philos. Mag. Lett. 97 494Google Scholar

    [22]

    Yang T, Zhao Y L, Tong Y, Jiao Z B, Wei J, Cai J X, Han X D, Chen D, Hu A, Kai J J, Lu K, Liu Y, Liu C T 2018 Science 362 933Google Scholar

    [23]

    He Q, Guo Y Q, Zheng Z Z 2013 Appl. Mech. Mater. 455 66Google Scholar

    [24]

    Yin L H, Guo Y Q, Guo X P 2022 J. Magn. Magn. Mater. 563 169883Google Scholar

    [25]

    郭新鹏, 郭永权, 王京南, 殷林瀚 2021 华南师范大学学报(自然科学版) 53 1Google Scholar

    Guo X P, Guo Y Q, Wang J N, Yin L H 2021 J. South China Norm. Univ. , Nat. Sci. Ed. 53 1Google Scholar

    [26]

    Cheng Z H, Shen B G, Zhang J X, Liang B, Guo H Q, Kronmüller H 1997 Appl. Phys. Lett. 70 3467Google Scholar

    [27]

    Wei X Z, Hu S J, Zeng D C, Liu Z Y, Brück E, Klaasse J C P, de Boer F R, Buschow K H J 1999 Phys. B Condens. Matter 266 249Google Scholar

    [28]

    Sun Z G, Zhang S Y, Zhang H W, Shen B G 2001 J. Alloys Compd. 322 69Google Scholar

    [29]

    Fuquan B, Tegus O, Dagula W, Brück E, Klaasse J C P, Buschow K H J 2007 J. Alloys Compd. 431 72Google Scholar

    [30]

    Yang X, Zhang Y 2012 Mater. Chem. Phys. 132 233Google Scholar

    [31]

    Guo Y Q, Li W, Feng W C, Luo J, Liang J K, He Q J, Yu X J 2005 Appl. Phys. Lett. 86 192513Google Scholar

    [32]

    Bean C P, Livingston J D, Rodbell D S 1959 J. Phys. Radium 20 298Google Scholar

    [33]

    Buschow K H J 1980 Handb. Ferromagn. Mater. (Vol. 1)(Amsterdam: Elsevier) pp297–414

    [34]

    Gu Z F, Zeng D C, Liu Z Y, Liang S Z, Klaasse J C P, Bru E, de Boer F R, Buschow K H J 2001 Physica B 304 289Google Scholar

    [35]

    Wang J Y, Shen B G, Zhang S Y, Sun Z G, Zhan W S 1999 J. Phys. Appl. Phys. 32 2371Google Scholar

    [36]

    Guo Y Q, Feng W C, Li W, Luo J, Liang J K 2007 J. Appl. Phys. 101 023919Google Scholar

  • 图 1  熵调控Gd2Co17系列样品XRD图谱 (a) Gd2Co17; (b) Gd2(Co1/2Fe1/2)17; (c) Gd2(Co1/3Fe1/3Ni1/3)17; (d) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17; (e) (Gd1/2Tb1/2)2Co17; (f) (Gd1/3Tb1/3Dy1/3)2Co17; (g) (Gd1/4Tb1/4Dy1/4Ho1/4)2Co17

    Fig. 1.  The XRD patterns of the entropized Gd2Co17 intermetallic compounds: (a) Gd2Co17; (b) Gd2(Co1/2Fe1/2)17; (c) Gd2(Co1/3Fe1/3Ni1/3)17; (d) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17; (e) (Gd1/2Tb1/2)2Co17; (f) (Gd1/3Tb1/3Dy1/3)2Co17; (g) (Gd1/4Tb1/4Dy1/4Ho1/4)2Co17.

    图 2  代表性样品的精修XRD图谱 (a) Gd2(Co1/3Fe1/3Ni1/3)17; (b) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17

    Fig. 2.  Refined XRD pattern of typical samples: (a) Gd2(Co1/3Fe1/3Ni1/3)17; (b) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17.

    图 3  代表性样品的SEM图像、EDS图谱 (a) Gd2(Co1/3Fe1/3Ni1/3)17; (b) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17

    Fig. 3.  SEM image and EDS pattern of typical samples: (a) Gd2(Co1/3Fe1/3Ni1/3)17; (b) Gd2(Co1/4Fe1/4Ni1/4 Mn1/4)17.

    图 4  Gd2(T1, T2, ···, Tn)17系列取向样品XRD图谱 (a) Gd2Co17; (b) Gd2(Co1/2Fe1/2)17; (c) Gd2(Co1/3Fe1/3Ni1/3)17; (d) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17

    Fig. 4.  XRD patterns of aligned Gd2(T1, T2, ···, Tn)17 intermetallic compounds: (a) Gd2Co17; (b) Gd2(Co1/2Fe1/2)17; (c) Gd2(Co1/3Fe1/3Ni1/3)17; (d) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17.

    图 5  (R1, R2, ···, Rn)2Co17系列取向样品XRD图谱 (a) (Gd1/2Tb1/2)2Co17; (b) (Gd1/3Tb1/3Dy1/3)2Co17; (c) (Gd1/4Tb1/4Dy1/4Ho1/4)2Co17

    Fig. 5.  XRD patterns of aligned (R1, R2, ···, Rn)2Co17 intermetallic compounds: (a) (Gd1/2Tb1/2)2Co17; (b) (Gd1/3Tb1/3Dy1/3)2Co17;(c) (Gd1/4Tb1/4Dy1/4Ho1/4)2Co17.

    图 6  熵调控Gd2Co17系列取向样品平行和垂直于外加磁场方向的磁滞回线 (a)Gd2(Co1/2Fe1/2)17; (b) Gd2(Co1/3Fe1/3Ni1/3)17; (c) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17; (d) (Gd1/2Tb1/2)2Co17; (e) (Gd1/3Tb1/3Dy1/3)2Co17; (f) (Gd1/4Tb1/4Dy1/4Ho1/4)2Co17

    Fig. 6.  Hysteresis loops of entropized Gd2Co17 samples with magnetic aligned direction parallel and perpendicular to the direction of applied magnetic field: (a) Gd2(Co1/2Fe1/2)17; (b) Gd2(Co1/3Fe1/3Ni1/3)17; (c) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17; (d) (Gd1/2Tb1/2)2Co17; (e) (Gd1/3Tb1/3Dy1/3)2Co17; (f) (Gd1/4Tb1/4Dy1/4Ho1/4)2Co17.

    图 7  Gd2(T1, T2, ···, Tn)17系列取向样品的磁晶各向异性场 (a) Gd2(Co1/2Fe1/2)17; (b) Gd2(Co1/3Fe1/3Ni1/3)17; (c) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17

    Fig. 7.  Magnetic anisotropy field of field aligned Gd2(T1, T2, ···, Tn)17: (a) Gd2(Co1/2Fe1/2)17; (b) Gd2(Co1/3Fe1/3Ni1/3)17; (c) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17.

    图 8  Gd2Co17系列取向样品的拟合磁化曲线 (a) Gd2(Fe1/2Co1/2)17; (b) Gd2(Co1/3Fe1/3Ni1/3)17; (c) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17; (d) (Gd1/2Tb1/2)2Co17; (e) (Gd1/3Tb1/3Dy1/3)2Co17; (f) (Gd1/4Tb1/4Dy1/4Ho1/4)2Co17

    Fig. 8.  Fitted magnetization curves of field aligned entropized Gd2Co17: (a) Gd2(Co1/2Fe1/2)17; (b) Gd2(Co1/3Fe1/3Ni1/3)17; (c) Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17; (d) (Gd1/2Tb1/2)2Co17; (e) (Gd1/3Tb1/3Dy1/3)2Co17; (f) (Gd1/4Tb1/4Dy1/4Ho1/4)2Co17.

    表 1  熵调控Gd2Co17系列样品热力学参数

    Table 1.  Thermodynamic parameters of entropized Gd2Co17 intermetallic compounds.

    样品原子半径差 ${{\Delta } }r$/%${\rm{混} }{\rm{合} }{\rm{焓} }\Delta {{\boldsymbol{H}}}_{ {\rm{m} }{\rm{i} }{\rm{x} } }$/(kJ·mol–1)混合熵 $\Delta {S}_{ {\rm{mix} } } /R$
    稀土位金属位稀土位-金属位
    Gd2Co17–8.290
    Gd2(Co1/2Fe1/2)170.79–1.00–5.130.69
    Gd2(Co1/3Fe1/3Ni1/3)170.99–1.33–7.851.10
    Gd2(Co1/4Fe1/4Ni1/4Mn1/4)171.81–4.00–8.381.39
    (Gd1/2Tb1/2)2Co170.550–8.480.69
    (Gd1/3Tb1/3Dy1/3)2Co170.690–8.541.10
    (Gd1/4Tb1/4Dy1/4Ho1/4)2Co170.830–8.481.39
    下载: 导出CSV

    表 2  熵调控Gd2Co17系列样品晶格参数、品质因子和可信度因子

    Table 2.  Lattice parameter, merit factors M and smith factor F of entropized Gd2Co17 intermetallic compounds.

    样品acV3M(20)F(20)
    Gd2Co178.378(0)12.206(6)742.0(0)2827
    Gd2(Co1/2Fe1/2)178.458(0)12.409(6)768.8(2)1714
    Gd2(Co1/3Fe1/3Ni1/3)178.444(4)12.254(1)756.6(7)2323
    Gd2(Co1/4Fe1/4Ni1/4Mn1/4)178.507(0)8. 267(8)518.1(7)4939
    (Gd1/2Tb1/2)2Co178.332(3)8.133(1)489.0(1)4652
    (Gd1/3Tb1/3Dy1/3)2Co178.363(1)12.203(0)739.1(5)2828
    (Gd1/4Tb1/4Dy1/4Ho1/4)2Co178.333(6)8.125(6)488.7(1)4445
    下载: 导出CSV

    表 3  选取样品的元素组成

    Table 3.  Element compositions of typical samples.

    元素Gd2(Co1/3Fe1/3Ni1/3)17Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17
    质量百分比/%原子百分比/%质量百分比/%原子百分比/%
    Gd24.510.626.011.3
    Co26.130.318.921.9
    Fe24.029.416.920.7
    Ni25.429.620.123.4
    Mn18.122.7
    下载: 导出CSV

    表 4  具有菱方结构的样品的精修晶体学数据

    Table 4.  Refined crystallographic data of samples with rhombohedral structure.

    样品Gd2Co17Gd2(Co1/2Fe1/2)17Gd2(Co1/3Fe1/3Ni1/3)17(Gd1/3Tb1/3Dy1/3)2Co17
    空间群${R}\bar3{m}$${R}\bar3{m}$${R}\bar{\text{3} }{m}$${R}\bar3{m}$
    a8.375(2)8.454(5)8.444(7)8.358(0)
    c12.200(4)12.413(7)12.254(3)12.185(7)
    V3741.131(2)768.436(1)756.817(0)737.200(9)
    稀土位GdGdGdGd, Tb, Dy
    6c (0, 0, z)(z = 0.34369)(z = 0.34188)(z = 0.33731)(z = 0.34197)
    占位率/%100100100各33.33
    金属位CoCo, FeFe, Co, NiCo
    6c (0, 0, z)(z = 0.09431)(z = 0.08016)(z = 0.08100)(z = 0.09567)
    占位率/%100各50各33.33100
    9d (1/2, 0, 1/2)
    占位率/%100各50各33.33100
    18f (x, 0, 0)(x = 0.28942)(x = 0.30352)(x = 0.30607)(x = 0.29175)
    占位率/%100各50各33.33100
    18h (x, 1–x, z)(x = 0.16826; z = 0.48728)(x = 0.50226; z = 0.15830)(x = 0.16629; z = 0.49090)(x = 0.16783; z = 0.48701)
    占位率/%100各50各33.33100
    Rp/%5.1448.1108.8305.605
    RWP/%6.86510.61112.6907.057
    下载: 导出CSV

    表 5  具有六方结构的样品的精修晶体学数据

    Table 5.  Refined crystallographic data of samples with hexagonal structure.

    样品Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17(Gd1/2Tb1/2)2Co17(Gd1/4Tb1/4Dy1/4Ho1/4)2Co17
    空间群P63/mmcP63/mmcP63/mmc
    a8.501(6)8.329(5)8.332(9)
    c8.265(3)8.130(4)8.124(4)
    V3517.357(3)488.512(1)488.561(0)
    稀土位GdGd, TbGd, Tb, Dy, Ho
    2b (0, 0, 1/4)
    占位率/%100各50各25
    2d (1/3, 2/3, 3/4)
    占位率/%100各50各25
    金属位Fe, Co, Ni, MnCoCo
    4f (1/3, 2/3, z)(z = 0.14285)(z = 0.12127)(z = 0.13757)
    占位率/%各25100100
    6g (1/2, 0, 0)
    占位率/%各25100100
    12j (x, y, 1/4)(x = 0.32333; y = –0.02248)(x = 0.33032; y = 0.96090)(x = 0.32409; y = 0.96806)
    占位率/%各25100100
    12k (x, 2x, z)(x = 0.16182; z = –0.11890)(x = 0.16585; z = 0.98326)(x = 0.16655; z = 0.98716)
    占位率/%各25100100
    Rp/%7.0068.079.07
    RWP/%8.94210.5011.80
    下载: 导出CSV

    表 6  熵调控Gd2Co17系列样品有效原子半径RA

    Table 6.  Effective radius ratio RA of entropized Gd2Co17 intermetallic compounds.

    样品晶体结构有效原子半径RA
    Gd2Co17菱方1.4262
    Gd2(Co1/2Fe1/2)17菱方1.4330
    Gd2(Co1/3Fe1/3Ni1/3)17菱方1.4334
    Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17六方1.3996
    (Gd1/2Tb1/2)2Co17六方1.4166
    (Gd1/3Tb1/3Dy1/3)2Co17菱方1.4105
    (Gd1/4Tb1/4Dy1/4Ho1/4)2Co17六方1.4056
    下载: 导出CSV

    表 7  熵调控Gd2Co17系列取向样品磁化曲线拟合参数

    Table 7.  Results of fitted magnetization parameters of field aligned entropized Gd2Co17.

    取向样品拟合度Nμ/(emu·g–1)Nμ/μB
    Gd2(Co1/2Fe1/2)170.99887109.56395±0.0288225.30
    Gd2(Co1/3Fe1/3Ni1/3)170.9963074.23084±0.0327917.19
    Gd2(Co1/4Fe1/4Ni1/4Mn1/4)170.9964468.97675±0.0294615.87
    (Gd1/2Tb1/2)2Co170.99985104.73245±0.0103824.71
    (Gd1/3Tb1/3Dy1/3)2Co170.9984471.71314±0.0197716.96
    (Gd1/4Tb1/4Dy1/4Ho1/4)2Co170.9983783.60305±0.0256519.81
    下载: 导出CSV

    表 8  R2T17金属间化合物的室温磁性能

    Table 8.  Magnetic properties of R2T17 at room temperature.

    二元R2T17晶体结构饱和磁矩Nμ/μB居里温度Tc/K磁各向异性
    Gd2Co17菱方13.5—14.41209—1240基面
    Gd2Fe17六方21—21.5460—485基面
    Gd2Ni17六方8.8—9.36187—205
    Tb2Co17菱方8.4—10.71180—1195基面
    Dy2Co17六方7—8.31152—1188基面
    Ho2Co17六方5.8—7.71173—1183基面
    熵调控Gd2Co17晶体结构饱和磁矩Nμ/μB理论磁矩Nμ/μB磁各向异性
    Gd2(Co1/2Fe1/2)17菱方25.3017.25—17.95易轴
    Gd2(Co1/3Fe1/3Ni1/3)17菱方17.1914.43—15.09易轴
    Gd2(Co1/4Fe1/4Ni1/4Mn1/4)17六方15.87易轴
    (Gd1/2Tb1/2)2Co17六方24.7110.95—12.55基面
    (Gd1/3Tb1/3Dy1/3)2Co17菱方16.969.63—12.87基面
    (Gd1/4Tb1/4Dy1/4Ho1/4)2Co17六方19.818.68—10.28基面
    下载: 导出CSV

    表 9  熵调控Gd2Co17系列样品饱和磁矩计算结果

    Table 9.  Calculated moments of entropized Gd2Co17 intermetallic.

    样品实验
    磁矩/μB
    理论
    磁矩/μB
    $ {N}_{{\rm{s}}{\rm{p}}}^{\uparrow } $
    Gd2Co1713.5—14.414.400.30
    Gd2(Co1/2Fe1/2)1725.3026.700.40
    Gd2(Co1/3Fe1/3Ni1/3)1717.1918.200.40
    Gd2(Co1/4Fe1/4Ni1/4Mn1/4)1715.8713.950.40
    下载: 导出CSV
    Baidu
  • [1]

    Yin L H, Guo Y Q, Guo X P 2022 Inorg. Chem. 61 2402Google Scholar

    [2]

    Shen B G, Cheng Z H, Liang B, Guo H Q, Zhang J X, Gong H Y, Wang F W, Yan Q W, Zhan W S 1995 Appl. Phys. Lett. 67 1621Google Scholar

    [3]

    Coey J M D, Sun H 1990 J. Magn. Magn. Mater. 87 L251Google Scholar

    [4]

    易健宏, 彭元东 2004 稀有金属材料与工程 33 337Google Scholar

    Yi J H, Peng Y D 2004 Rare Metal Mat. Eng. 33 337Google Scholar

    [5]

    Cheng Z H, Shen B G, Liang B, Zhang J X, Wang F W, Zhang S Y, Zhao J G, Zhan W S 1995 J. Appl. Phys. 78 1385Google Scholar

    [6]

    Hasebe A, Imai T, Otsuki E 1994 Electr. Eng. Jpn. 114 15Google Scholar

    [7]

    Girt E, Altounian Z, Swainson I P 1997 Phys. B Condens. Matter 234 637Google Scholar

    [8]

    Girt E, Guillot M, Swainson I P, Krishnan K M, Altounian Z, Thomas G 2000 J. Appl. Phys. 87 5323Google Scholar

    [9]

    Liang J K, Huang Q, Santoro A, Liu Q L, Chen X L 1999 J. Appl. Phys. 86 1226Google Scholar

    [10]

    Wang S, Fang Y K, Song K K, Zhu X Y, Wang L, Sun W, Pan W, Zhu M G, Li W 2020 J. Rare Earths 38 1224Google Scholar

    [11]

    文雪萍, 易健宏, 彭元东, 李丽娅, 叶途明, 夏庆林 2005 粉末冶金材料科学与工程 10 236Google Scholar

    Wen X P, Yi J H, Peng Y D, Li L Y, Ye T M, Xia Q L 2005 Mater. Sci. Eng. Powder Metall. 10 236Google Scholar

    [12]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [13]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375 213Google Scholar

    [14]

    申天展, 宋海洋, 安敏荣 2021 70 186201Google Scholar

    Shen T Z, Song H Y, An M R 2021 Acta Phys. Sin. 70 186201Google Scholar

    [15]

    Zhou N X, Jiang S C, Huang T, Qin M D, Hu T, Luo J 2019 Sci. Bull. 64 856Google Scholar

    [16]

    Zhang Y, Yang X, Liaw P K 2012 JOM 64 830Google Scholar

    [17]

    Wang J, Zhang Y, Xiao H X, Li L Y, Kou H C, Li J S 2019 Mater. Lett. 240 250Google Scholar

    [18]

    鲁一荻, 张骁勇, 侯硕, 何卫锋, 王辉, 吕昭平 2021 稀有金属材料与工程 50 333

    Lu Y D, Zhang X Y, Hou S, He W F, Wang H, Lü Z P 2021 Rare Metal Mat. Eng. 50 333

    [19]

    李蕊轩, 张勇 2017 66 177101Google Scholar

    Li R X, Zhang Y 2017 Acta Phys. Sin. 66 177101Google Scholar

    [20]

    Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S, Maria J P 2015 Nat. Commun. 6 8485Google Scholar

    [21]

    Yadav T P, Mukhopadhyay S, Mishra S S, Mukhopadhyay N K, Srivastava O N 2017 Philos. Mag. Lett. 97 494Google Scholar

    [22]

    Yang T, Zhao Y L, Tong Y, Jiao Z B, Wei J, Cai J X, Han X D, Chen D, Hu A, Kai J J, Lu K, Liu Y, Liu C T 2018 Science 362 933Google Scholar

    [23]

    He Q, Guo Y Q, Zheng Z Z 2013 Appl. Mech. Mater. 455 66Google Scholar

    [24]

    Yin L H, Guo Y Q, Guo X P 2022 J. Magn. Magn. Mater. 563 169883Google Scholar

    [25]

    郭新鹏, 郭永权, 王京南, 殷林瀚 2021 华南师范大学学报(自然科学版) 53 1Google Scholar

    Guo X P, Guo Y Q, Wang J N, Yin L H 2021 J. South China Norm. Univ. , Nat. Sci. Ed. 53 1Google Scholar

    [26]

    Cheng Z H, Shen B G, Zhang J X, Liang B, Guo H Q, Kronmüller H 1997 Appl. Phys. Lett. 70 3467Google Scholar

    [27]

    Wei X Z, Hu S J, Zeng D C, Liu Z Y, Brück E, Klaasse J C P, de Boer F R, Buschow K H J 1999 Phys. B Condens. Matter 266 249Google Scholar

    [28]

    Sun Z G, Zhang S Y, Zhang H W, Shen B G 2001 J. Alloys Compd. 322 69Google Scholar

    [29]

    Fuquan B, Tegus O, Dagula W, Brück E, Klaasse J C P, Buschow K H J 2007 J. Alloys Compd. 431 72Google Scholar

    [30]

    Yang X, Zhang Y 2012 Mater. Chem. Phys. 132 233Google Scholar

    [31]

    Guo Y Q, Li W, Feng W C, Luo J, Liang J K, He Q J, Yu X J 2005 Appl. Phys. Lett. 86 192513Google Scholar

    [32]

    Bean C P, Livingston J D, Rodbell D S 1959 J. Phys. Radium 20 298Google Scholar

    [33]

    Buschow K H J 1980 Handb. Ferromagn. Mater. (Vol. 1)(Amsterdam: Elsevier) pp297–414

    [34]

    Gu Z F, Zeng D C, Liu Z Y, Liang S Z, Klaasse J C P, Bru E, de Boer F R, Buschow K H J 2001 Physica B 304 289Google Scholar

    [35]

    Wang J Y, Shen B G, Zhang S Y, Sun Z G, Zhan W S 1999 J. Phys. Appl. Phys. 32 2371Google Scholar

    [36]

    Guo Y Q, Feng W C, Li W, Luo J, Liang J K 2007 J. Appl. Phys. 101 023919Google Scholar

  • [1] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能.  , 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [2] 张鲁山, 于洪飞, 郭永权. FeTe合金结构分析及其薄膜制备.  , 2012, 61(1): 016101. doi: 10.7498/aps.61.016101
    [3] 卢喜瑞, 崔春龙, 张东, 陈梦君, 杨岩凯. 锆英石的抗γ射线辐照能力和Rietveld结构精修.  , 2011, 60(7): 078901. doi: 10.7498/aps.60.078901
    [4] 于洪飞, 张鲁山, 吴小会, 郭永权. NdNi2Ge2化合物的结构和电磁输运性质.  , 2011, 60(10): 107306. doi: 10.7498/aps.60.107306
    [5] 刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦. Sc2-xGaxW3O12体系负热膨胀性能研究.  , 2010, 59(5): 3350-3356. doi: 10.7498/aps.59.3350
    [6] 郝延明, 王玲玲, 严达利, 安力群. 电弧炉制备的Sm2Fe17-xCrx化合物的结构与磁性.  , 2009, 58(10): 7222-7226. doi: 10.7498/aps.58.7222
    [7] 陈怡, 申江. 稀土金属间化合物RFe2Zn20-xInx的结构属性研究.  , 2009, 58(13): 146-S150. doi: 10.7498/aps.58.146
    [8] 张立刚, 陈 静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李 钰. NaZn13型结构LaFe13-xAlxCy化合物的磁熵变与磁相变的研究.  , 2006, 55(10): 5506-5510. doi: 10.7498/aps.55.5506
    [9] 沈 俊, 李养贤, 胡凤霞, 王光军, 张绍英. Ce2Fe16Al化合物在居里温度附近的磁性和磁熵变.  , 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [10] 王文全, 闫 羽, 王向群, 王学凤, 苏 峰, 金汉民. Gd3Co29-xCrx新相化合物的结构与磁性.  , 2003, 52(3): 647-651. doi: 10.7498/aps.52.647
    [11] 张立刚, 李云宝, 张绍英, 沈保根. 少量Mn替代对Gd2Co17化合物结构与磁性的影响.  , 2002, 51(4): 913-916. doi: 10.7498/aps.51.913
    [12] 金属间化合物DyMn2Ge2的自发磁相变和场诱导的磁相变.  , 2001, 50(2): 313-318. doi: 10.7498/aps.50.313
    [13] 郭光华, R.Z.LEVITIN. 金属间化合物RMn2Ge2(R=La,Pr,Nd,Sm,Gd,Tb和Y)中的自发磁相变 及相变时的磁弹性异常.  , 2000, 49(9): 1838-1845. doi: 10.7498/aps.49.1838
    [14] 胡社军, 特古斯, 魏兴钊, 张雷, 曾德长, 刘正义, F.R.deBoer, K.H.J.Buschow. Ho2(Co,Si)17化合物的结构与磁晶各向异性.  , 2000, 49(2): 355-360. doi: 10.7498/aps.49.355
    [15] 阳 东, 王建立, 唐 宁, 沈宇平, 杨伏明. 3:29型Gd-Fe-Co-Cr化合物的结构和磁性.  , 1999, 48(13): 80-86. doi: 10.7498/aps.48.80
    [16] 张立刚, 张绍英, 张宏伟. 2: 17型结构Gd-Fe-Co-Ga化合物的结构与磁性.  , 1997, 46(11): 2241-2249. doi: 10.7498/aps.46.2241
    [17] 杨应昌, 孔麟书, 张晓东, 么佳斌, 程本培, 孔捷. R2Fe17C化合物的结构与内禀磁性的研究.  , 1993, 42(7): 1186-1192. doi: 10.7498/aps.42.1186
    [18] 杨应昌;孔麟书;张晓东;么佳斌;程本培;孔捷. R_2Fe_17_C化合物的结构与内禀磁性的研究.  , 1991, 40(7): 1186-1192. doi: 10.7498/aps.40.1186
    [19] 杨应昌, 孔麟书, 程本培. 新型金属间化合物Sm(TiFe)12的结构与磁性.  , 1988, 37(9): 1534-1539. doi: 10.7498/aps.37.1534
    [20] 郭慧群, 赵见高, 王震西, 谢侃, 沈保根. (Tb,Dy)Fe2金属间化合物的巨大磁致伸缩.  , 1979, 28(1): 121-124. doi: 10.7498/aps.28.121
计量
  • 文章访问数:  3566
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 修回日期:  2023-02-13
  • 上网日期:  2023-03-31
  • 刊出日期:  2023-05-20

/

返回文章
返回
Baidu
map