-
量子关联作为量子力学的奇特资源已经被应用在很多方面, 相对熵作为研究量子关联的关键概念之一, 总是被用来度量物理系统状态所包含的不确定性. 本文在已知min相对熵的一些基本性质的前提下, 分别提出了在两体和k体分划下基于min相对熵的关联测度的定义. 除此之外, 本文证明了该定义满足量子关联测度的一些基本性质, 包括非负性、在酉算子操作下保持不变性以及在完全正的保迹线性映射(CPTP)下的单调性. 介绍了量子信道的概念, 并且讨论了量子信道对k体分划下基于min相对熵的关联测度的影响. 通过提出新的关联测度以及证明量子信道对该测度的影响, 能够更好刻画物理系统状态所包含的不确定性.As a peculiar resource of quantum mechanics, quantum correlation has been applied to many aspects. In quantum information processing and quantum computing, the quantum correlation plays an extremely important role, and it has been a subject of further studies, principally due to the general belief that it is a fundamental resource for different quantum information processing tasks. In addition, correlation measure is a very important physical quantity in studying the quantum correlation. A well-defined correlation measure needs to have some necessary properties. By proving these necessary properties, we can deepen our understanding of correlation measure. As one of the key concepts of quantum information theory, relative entropy is always used to measure the uncertainty contained in the state of physical system. In order to better understand the properties and applications of correlation measure based on relative entropy, in this paper, according to the properties of the min relative entropy, we give the quantum correlation measure based on min relative entropy for two-partition and k-partition. Furthermore, we prove that it satisfies some necessary properties of quantum correlation measures, including the nonnegativity, the invariance under local unitary operators, and the monotonicity under completely positive trace-preserving. By proving these properties, we show that the given correlation measure is well-defined. Security of communication has received much attention since ancient times. In today's society, the internet, instant messaging and e-commerce applications are all related to the information security, and the information security is related to the vital interests of everyone. The information encryption is one of the important methods to ensure information security. As an important way to ensure information security, quantum channel has received more and more attention. At the end of the paper, we introduce the concept of quantum channel, and discuss the influence of quantum channel on the correlation measure based on min relative entropy under k-partition. By proposing a new correlation measure and proving the effect quantum channel on the measure, we can better describe the uncertainty contained in the state of physical system.
-
Keywords:
- correlation measure /
- relative entropy /
- k-partition /
- trace mapping /
- quantum systems
[1] Goh K T, Kaniewski J, Wolfe E 2018 Phys. Rev. A 97 022104Google Scholar
[2] Rundle R, Everitt M J 2021 J. Comput. Electron. 20 2180Google Scholar
[3] Qars J E 2021 Commun. Theor. Phys. 73 176Google Scholar
[4] 董曜, 纪爱玲, 张国锋 2022 71 070303Google Scholar
Dong Y, Ji A L, Zhang G F 2022 Acta. Phys. Sin. 71 070303Google Scholar
[5] Benrass N, Aoune D, Habiballah N 2022 Mod. Phys. Lett. A 37 406Google Scholar
[6] 曹雷明, 杜金鉴, 张凯 2022 71 160306Google Scholar
Cao L M, Du J J, Zhang K 2022 Acta. Phys. Sin. 71 160306Google Scholar
[7] Yang Y Y, Li L J, Ye L 2022 Chin. Phys. B 31 100303Google Scholar
[8] Tiokang O M, Tchangnwa F N, Tchinda J D 2022 Chin. Phys. B 31 110305Google Scholar
[9] Sarkar P J 2020 Pure. Appl. Algebra. 224 789Google Scholar
[10] Chen K, Wu L G 2002 Quantum. Inf. Comput. 3 193Google Scholar
[11] Anstock F, Schorbach V A 2020 J. Phys. Conf. Ser. 1618 022062Google Scholar
[12] Lewenstein M, Kraus B, Cirac J I 2000 Phys. Rev. A 62 2310Google Scholar
[13] Gao X H, Albeverio S, Chen K 2008 Front. Comput. Sci. Chi. 2 114Google Scholar
[14] Bordbar M, Naderi N, Chamgordani M A 2020 India. J. Phys. 2 901Google Scholar
[15] Duan Z B, Niu L F, Wang Y Y 2017 Int. J. Theor. Phys. 56 1929Google Scholar
[16] Oliveria A D, Buksman E, Lacalle J D 2014 Int. J. Mod. Phys. B 28 1450050Google Scholar
[17] Baba H, Mansour M, Daoud M 2022 J. Russ. Laser. Res. 43 124Google Scholar
[18] Sumiyoshi, ABE 2003 Phys. Rev. A 312 336Google Scholar
[19] Datta N 2009 Ieee. T. Inform. Theory. 55 2816Google Scholar
[20] Wang Y Z, Hou J C 2015 Quantum. Inf. Process. 14 3711Google Scholar
[21] Liu J, Jing X Q, Zhong W 2014 Commun. Theor. Phys. 61 45Google Scholar
-
[1] Goh K T, Kaniewski J, Wolfe E 2018 Phys. Rev. A 97 022104Google Scholar
[2] Rundle R, Everitt M J 2021 J. Comput. Electron. 20 2180Google Scholar
[3] Qars J E 2021 Commun. Theor. Phys. 73 176Google Scholar
[4] 董曜, 纪爱玲, 张国锋 2022 71 070303Google Scholar
Dong Y, Ji A L, Zhang G F 2022 Acta. Phys. Sin. 71 070303Google Scholar
[5] Benrass N, Aoune D, Habiballah N 2022 Mod. Phys. Lett. A 37 406Google Scholar
[6] 曹雷明, 杜金鉴, 张凯 2022 71 160306Google Scholar
Cao L M, Du J J, Zhang K 2022 Acta. Phys. Sin. 71 160306Google Scholar
[7] Yang Y Y, Li L J, Ye L 2022 Chin. Phys. B 31 100303Google Scholar
[8] Tiokang O M, Tchangnwa F N, Tchinda J D 2022 Chin. Phys. B 31 110305Google Scholar
[9] Sarkar P J 2020 Pure. Appl. Algebra. 224 789Google Scholar
[10] Chen K, Wu L G 2002 Quantum. Inf. Comput. 3 193Google Scholar
[11] Anstock F, Schorbach V A 2020 J. Phys. Conf. Ser. 1618 022062Google Scholar
[12] Lewenstein M, Kraus B, Cirac J I 2000 Phys. Rev. A 62 2310Google Scholar
[13] Gao X H, Albeverio S, Chen K 2008 Front. Comput. Sci. Chi. 2 114Google Scholar
[14] Bordbar M, Naderi N, Chamgordani M A 2020 India. J. Phys. 2 901Google Scholar
[15] Duan Z B, Niu L F, Wang Y Y 2017 Int. J. Theor. Phys. 56 1929Google Scholar
[16] Oliveria A D, Buksman E, Lacalle J D 2014 Int. J. Mod. Phys. B 28 1450050Google Scholar
[17] Baba H, Mansour M, Daoud M 2022 J. Russ. Laser. Res. 43 124Google Scholar
[18] Sumiyoshi, ABE 2003 Phys. Rev. A 312 336Google Scholar
[19] Datta N 2009 Ieee. T. Inform. Theory. 55 2816Google Scholar
[20] Wang Y Z, Hou J C 2015 Quantum. Inf. Process. 14 3711Google Scholar
[21] Liu J, Jing X Q, Zhong W 2014 Commun. Theor. Phys. 61 45Google Scholar
计量
- 文章访问数: 2992
- PDF下载量: 56
- 被引次数: 0