搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合肥先进光源:赋能关联电子系统研究

孙喆 沈大伟 罗震林 闫文盛

引用本文:
Citation:

合肥先进光源:赋能关联电子系统研究

孙喆, 沈大伟, 罗震林, 闫文盛

Hefei Advanced Light Facility: Empowering Research on Correlated Electron Systems

Sun Zhe, Shen Dawei, Luo Zhenlin, Yan Wensheng
PDF
导出引用
  • 合肥先进光源是一个第四代衍射极限储存环光源,计划于 2028 年投入运行,凭借其高亮度和高相干性 X 射线,将突破当前 X 射线技术研究关联电子系统所面临的时空分辨率瓶颈,为理解这些材料中新奇物性的本质和微观起源提供关键信息。本文介绍了合肥先进光源的主要科学目标和技术优势,重点阐述了角分辨光电子能谱、磁圆二色、相干 X 射线散射和相干 X 射线成像等核心技术在量子材料和关联电子系统研究中的应用前景。这些技术将能够精细解析电子/自旋/轨道态的分布和动力学过程,揭示各种新奇量子现象,以及关联电子体系中各种序参量的涨落。合肥先进光源的建成将为解码复杂量子态和非平衡演化行为提供先进的技术支持,最终推动量子材料和关联电子系统在能源、信息等前沿领域的应用。
    The Hefei Advanced Light Facility is a fourth-generation diffraction-limited storage ring light source scheduled to begin operation in 2028. With its high-brightness and highly coherent X-rays, it will break through the current spatiotemporal resolution bottlenecks of X-ray techniques in studying correlated electron systems, providing crucial information for understanding the nature and microscopic origins of novel physical properties in these materials. This article introduces the main scientific goals and technical advantages of the Hefei Advanced Light Facility, focusing on the application perspectives of advanced technologies such as angle-resolved photoemission spectroscopy, magnetic circular dichroism, coherent X-ray scattering, and coherent X-ray imaging in researches of quantum materials and correlated electron systems. These techniques will enable detailed analysis of the distribution and dynamics of electronic/spin/orbital states, reveal various novel quantum phenomena, and elucidate fluctuations of order parameters in correlated electron systems. The completion of the Hefei Advanced Light Facility will provide advanced technical supports for decoding complex quantum states and non-equilibrium properties, ultimately promoting the application of quantum materials and correlated electron systems in frontier fields such as energy and information.
  • [1]

    Als-Nielsen J, McMorrow D 2015 Modern Elements of X-ray Physics (Translated by Feng D L) (Shanghai: Fudan University Press) (in Chinese) [封东来 译,现代X光物理原理 (Jens Als-Nielsen, Des McMorrow 著 2015 Modern elements of X-ray Physics, 中译本) (上海: 复旦大学出版社)]

    [2]

    Mai Z H, et al. 2013 Synchrotron Radiation Sources and Applications (Vol. 1 and 2) (Beijing: Science Press) (in Chinese) [麦振洪,等2013同步辐射光源及其应用 (上下两册) (北京: 科学出版社)]

    [3]

    Eberhardt W 2015 J. Electron Spectrosc. 200 31

    [4]

    Eriksson M, van der Veen J F, Quitmann C 2014 J. Synchrotron Radiat. 21 837

    [5]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006

    [6]

    Iwasawa H 2020 Electron. Struct. 2 043001

    [7]

    Lisi S, Lu X B, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E, Hunter A, Tamai A, Kandyba V, Giampietri A, Barinov A, Jobst J, Stalman V, Leeuwenhoek M, Watanabe K, Taniguchi T, Rademaker L, van der Molen S J, Allan M P, Efetov D K, Baumberger F 2021 Nat. Phys. 17 189

    [8]

    Cattelan M, Fox N A 2018 Nanomaterials-Basel 8 284

    [9]

    Mo S K 2017 Nano Converg. 4 6

    [10]

    Chen C T, Sette F, Ma Y, Modesti S 1990 Phys. Rev. B 42 7262

    [11]

    van der Laan G, Figueroa A I 2014 Coordin. Chem. Rev. 277 95

    [12]

    Klewe C, Qian L, Mengmeng Y, N'Diaye A T, Burn D M, Hesjedal T, Figueroa A I, Chanyong H, Jia L, Hicken R J, Shafer P, Arenholz E, van der Laan G, Qian Z 2020 Synchrotron Radiat. News 33 12

    [13]

    Purbawati A, Coraux J, Vogel J, Hadj-Azzem A, Wu N J, Bendiab N, Jegouso D, Renard J, Marty L, Bouchiat V, Sulpice A, Aballe L, Foerster M, Genuzio F, Locatelli A, Mentes T O, Han Z V, Sun X D, Núñez-Regueiro M, Rougemaille N 2020 ACS Appl. Mater. Inter. 12 30702

    [14]

    Barinov A, Dudin P, Gregoratti L, Locatelli A, Mentes T O, Niño M A, Kiskinova M 2009 Nucl. Instrum. Meth. A 601 195

    [15]

    Sutton M, Mochrie S G J, Greytak T, Nagler S E, Berman L E, Held G A, et al. 1991 Nature 352 608

    [16]

    Bluschke M, Basak R, Barbour A, Warner A N, Fürsich K, Wilkins S, Roy S, Lee J, Christiani G, Logvenov G, Minola M, Keimer B, Mazzoli C, Benckiser E, Frano A 2022 Sci. Adv. 8 eabn6882

    [17]

    Shpyrko O G 2014 J. Synchrotron Radiat. 21 1057

    [18]

    Sandy A R, Zhang Q T, Lurio L B 2018 Annual Review of Materials Research 48 167

    [19]

    Zhang Q T, Dufresne E M, Sandy A R 2018 Curr. Opin. Solid St. M. 22 202

    [20]

    Shpyrko O G, Isaacs E D, Logan J M, Feng Y J, Aeppli G, Jaramillo R, et al. 2007 Nature 447 68

    [21]

    Grübel G, Madsen A, Robert A 2008 Soft Matter Characterization (eds Borsali R, Pecora R) (Dordrecht: Springer) p953

    [22]

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702 (in Chinese) [范家东, 江怀东 2012 61 218702]

    [23]

    Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530

    [24]

    Rau C 2017 Synchrotron Radiation News 30 19

    [25]

    Tripathi A, Mohanty J, Dietze S H, Shpyrko O G, Shipton E, Fullerton E E, Kim S S, McNulty I 2011 Proc. Natl. Acad. Sci. U.S.A. 108 13393

    [26]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Reports 66 867

    [27]

    Pfeiffer F 2018 Nat. Photonics 12 9

    [28]

    Donnelly C, Scagnoli V 2020 J. Phys.: Condens. Matter 32 213001

    [29]

    Lo Y H, Zhao L, Gallagher-Jones M, Rana A, Lodico J J, Xiao W, Regan B C, Miao J 2018 Nat. Commun. 9 1826

  • [1] 陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明. 针对微尺寸X射线源的非相干全息层析成像.  , doi: 10.7498/aps.72.20230920
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术.  , doi: 10.7498/aps.71.20220976
    [3] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探.  , doi: 10.7498/aps.69.20191586
    [4] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像.  , doi: 10.7498/aps.65.219501
    [5] 高凤菊. 弯曲Cu纳米线相干X射线衍射图的计算.  , doi: 10.7498/aps.64.138102
    [6] 刘海岗, 许子健, 张祥志, 郭智, 邰仁忠. 中心挡板对扫描相干X射线衍射成像的影响.  , doi: 10.7498/aps.62.150702
    [7] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究.  , doi: 10.7498/aps.61.018701
    [8] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用.  , doi: 10.7498/aps.61.218702
    [9] 程冠晓, 胡超. X射线相衬成像光子筛.  , doi: 10.7498/aps.60.080703
    [10] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔. 相干X射线衍射成像的数字模拟研究.  , doi: 10.7498/aps.60.028701
    [11] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱.  , doi: 10.7498/aps.59.6059
    [12] 张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠. 基于软X射线谱学显微双能衬度图像的元素空间分布研究.  , doi: 10.7498/aps.59.4535
    [13] 汤 征, 李长真, 尹 镝, 朱本鹏, 汪丽莉, 王俊峰, 熊 鋭, 王取泉, 石 兢. 强耦合磁失措自旋冰系统Dy2Ti2O7单晶生长和基本磁性质测量.  , doi: 10.7498/aps.55.6532
    [14] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱.  , doi: 10.7498/aps.54.85
    [15] 杨家敏, 丁耀南, 郑志坚, 王耀梅, 张文海, 张继彦, 刘进元, 山 冰, 高盛琛, 任有来, 刘秀琴. 时空分辨软x射线谱诊断技术研究.  , doi: 10.7498/aps.52.1427
    [16] 陶向明, 徐小军, 谭明秋. 非球对称势场与轨道有序化:NiO电子结构再研究.  , doi: 10.7498/aps.51.2602
    [17] 孙可煦, 江少恩, 黄天暄, 易荣清, 崔延莉, 王红斌, 陈久森, 于瑞珍, 丁耀南, 丁永坤, 唐道源, 温树槐. 滤波差分法测量软X射线谱.  , doi: 10.7498/aps.49.98
    [18] 朱士尧, 徐纪华, 赵淑君, 李醒. B的KαX射线谱精细结构的研究.  , doi: 10.7498/aps.40.1411
    [19] 章辉煌, 林尊琪, 何兴法, 张正泉, 王笑琴, 逯其荣, 谷忠民, 庄亦飞, 崔季秀, 余文炎, 李家明, 龚美霞, 张小秋, 雷志远, 杨斌洲, 赵卫. Mg微管靶喷口电子密度及X射线谱的时间分辨特性.  , doi: 10.7498/aps.38.1838
    [20] 郭常霖, 吉昂, 陶光仪. 原级X射线谱强度分布的定量测定.  , doi: 10.7498/aps.30.1351
计量
  • 文章访问数:  95
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-08-23

/

返回文章
返回
Baidu
map