搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属磁记忆应变诱导磁性变化的原子尺度作用机理

王思远 梁添寿 时朋朋

引用本文:
Citation:

金属磁记忆应变诱导磁性变化的原子尺度作用机理

王思远, 梁添寿, 时朋朋

Mechanism of strain-induced magnetic properties changes for metal magnetic memory technology on atomic scale

Wang Si-Yuan, Liang Tian-Shou, Shi Peng-Peng
PDF
HTML
导出引用
  • 基于力磁耦合效应的磁记忆检测技术, 被广泛应用于铁磁性结构件的应力和缺陷检测. 已有研究采用第一性原理针对α-Fe体系开展了轴向拉压作用下磁矩变化计算, 初步讨论了原子层面的磁检测技术力磁耦合机理. 本文以Fe-C和Fe-Mn掺杂体系为例, 在更为复杂的拉伸、压缩和剪切加载情形下, 深入讨论了α-Fe材料不同类型原子掺杂体系中磁矩变化等力磁耦合规律机理. 结果表明, α-Fe和掺杂体系在不同类型应变作用下磁矩和能量的变化规律存在不同. 结合态密度、能带结构和原子磁矩的详细分析, 发现掺杂元素通过影响Fe原子的磁矩, 使掺杂体系能带结构的形貌和态密度的峰值发生改变, 进而导致掺杂体系的磁矩和能量变化规律存在差异. 本研究从原子层面考虑了铁磁材料在不同荷载类型、不同掺杂元素和含量下的力磁耦合效应, 是磁记忆检测中多场耦合物理机理的重要补充.
    Magnetic non-destructive testing technology is widely used to detect stresses and defects in ferromagnetic materials based on the magneto-mechanical coupling effect. In the existing studies, calculated are the magnetic moment variations of the α-Fe system under axial tension and compression by using first-principles study, and the magneto-mechanical coupling mechanism is preliminarily discussed at an atomic level for the magnetic testing technology. In this work, taking the more complex doping systems Fe-C and Fe-Mn for examples, under different loading conditions of tension, compression and shearing, the coupling mechanisms such as the magnetic moment changes in different types of atomic doping systems are discussed in detail. The results show that the α-Fe and doping systems follow different changing laws of magnetic moments and energy under different types of strains. The detailed analyses of the density of states, the band structure, and the atomic magnetic moment show that doping elements change the morphology of band structure and the peak value of density of states by affecting the magnetic moment of Fe atoms, which leads the changing laws of magnetic moment and energy to be different from each other. In this work, discussed are the magneto-mechanical effects on the atomic level for ferromagnetic materials with different loading types, different doping elements and different element content. The results can be used as an important part of the multi-field coupling mechanism for magnetic testing technology.
      通信作者: 时朋朋, shipengpeng@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11802225)、陕西省自然科学基础研究计划(批准号: 2021JQ-494)和中国博士后科学基金(批准号: 2019M663935XB)资助的课题.
      Corresponding author: Shi Peng-Peng, shipengpeng@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11802225), the Basic Research Program of Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JQ-494), and the China Postdoctoral Science Foundation (Grant No. 2019M663935XB).
    [1]

    De Sousa J M, Aguiar A L, Girão E C, Fonseca A F, Souza Filho A G, Galvão D S 2021 Chem. Phys 542 111052Google Scholar

    [2]

    李君, 刘立胜, 徐爽, 张金咏 2020 69 043102Google Scholar

    Li J, Liu L S, Xu S, Zhang J Y 2020 Acta Phys. Sin. 69 043102Google Scholar

    [3]

    Hadji S, Bouhemadou A, Haddadi K, Cherrad D, Khenata R, Bin-Omran S, Al-Douri Y 2020 Physica B 589 412213Google Scholar

    [4]

    Kohn W, Sham L J 1965 Phys. Rev 140 A1133Google Scholar

    [5]

    Han Z K, Sarker D, Ouyang R, Mazheika A, Gao Y, Levchenko S V 2021 Nat. Commun 12 1833Google Scholar

    [6]

    祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉 2021 70 178101Google Scholar

    Zhu P, Zhang Q, Gou H S, Wang P P, Shao P Z, Kobayashi Equo, Wu G H 2021 Acta Phys. Sin. 70 178101Google Scholar

    [7]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat. Commun 12 1Google Scholar

    [8]

    Shiojiri D, Iida T, Kadono T, Yamaguchi M, Kodama T, Yamaguchi S, Imai Y 2021 J. Appl. Phys 129 115101Google Scholar

    [9]

    Kohl M, Krevet B, Yeduru S R, Ezer Y, Sozinov A 2011 Smart Mater. Struct 20 094009Google Scholar

    [10]

    Daniel L, Rekik M, Hubert O 2014 Arch. Appl. Mech 84 1307Google Scholar

    [11]

    Shi P P, Zheng X J 2016 Nondestruct. Test. Eval 31 45Google Scholar

    [12]

    Jiles D C 1995 J. Phys. D 28 1537Google Scholar

    [13]

    Joule J P 1847 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 30 76Google Scholar

    [14]

    Corte-Leon P, Zhukova V, Blanco J M, et al. 2021 J. Alloys Compd 855 157460Google Scholar

    [15]

    Zhang J M, Nie Y Z, Wang X G, Xia Q L, Guo G H 2021 J. Magn. Magn. Mater 525 167687Google Scholar

    [16]

    Ray R B, Kaphle G C, Rai R K, Yadav D K, Paudel R, Paudyal D 2021 J. Alloys Compd 867 158906Google Scholar

    [17]

    Shi P P, Su S Q, Chen Z M 2020 J. Nondestruct. Eval 39 1Google Scholar

    [18]

    Dubov A A 2012 Chem. Petrol. Eng 47 837Google Scholar

    [19]

    Tanasienko A G, Suntsov S I, Dubov A A 2002 Chem. Petrol. Eng 38 624Google Scholar

    [20]

    Kuleev V G, Dubov A A, Lopatin V V 2002 Russ. J. Nondestruct. Test 38 343Google Scholar

    [21]

    Dubov A A 2015 Metallurgist 59 164Google Scholar

    [22]

    时朋朋, 郝帅 2020 70 034101Google Scholar

    Shi P P, Hao S 2020 Acta Phys. Sin. 70 034101Google Scholar

    [23]

    时朋朋 2021 力学学报 70 3341Google Scholar

    Shi P P 2021 Chin. J. Theor. Appl. Mech. 70 3341Google Scholar

    [24]

    Yang L J, Liu B, Chen L J 2013 NDT & E Int. 55 15Google Scholar

    [25]

    杨理践, 刘斌, 高松巍, 陈立佳 2013 62 086201Google Scholar

    Yang L J, Liu B, Gao S W, Chen L J 2013 Acta Phys. Sin. 62 086201Google Scholar

    [26]

    Essaoud S S, Jbara A S 2021 J. Magn. Magn. Mater 531 167984Google Scholar

    [27]

    Maskar E, Lamrani A F, Belaiche M, Es-Smairi A, Khuili M, Al-Qaisi S, Rai D P 2021 Surf. Interfaces 24 101051Google Scholar

    [28]

    Payne M C, Teter M P, Allan D C 1992 Rev. Mod. Phys 64 1045Google Scholar

    [29]

    Milman V, Winkler B, White J A 2000 Int. J. Quantum Chem 77 895

    [30]

    Stewart J C, Matthew D S, Chris J P, Phil J H, Matt I J, Keith R, Mike C P 2005 Z. Kristallogr 220 567Google Scholar

    [31]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys 110 5029Google Scholar

    [32]

    Marzari N, Vanderbilt D, Payne M C 1997 Phys. Rev. Lett 79 1337Google Scholar

    [33]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci 49 299Google Scholar

    [34]

    Rahman G, Kim I G 2008 J. Magn 13 124Google Scholar

    [35]

    Kittel C 2021 Introduction to Solid State Physics (8th Ed.)

    [36]

    Fang C M, Van Huis M A, Sluiter M H F, Zandbergen H W 2010 Acta Mater 58 2968Google Scholar

  • 图 1  拉伸、压缩和剪切作用引起的α-Fe磁矩(M)和能量增量(ΔE)的变化图 (a) α-Fe的2 × 2 × 2超胞在拉伸、压缩和剪切应变作用下的计算模型; (b) 磁矩变化; (c) 能量增量

    Fig. 1.  Variation of α-Fe magnetic moment (M) and energy increment (ΔE) induced by tension, compression and shear strain: (a) Model of α-Fe 2 × 2 × 2 supercell under tensile, compressive and shear strain; (b) Change of magnetic moment; (c) Increment of energy.

    图 A1  收敛性测试 (a) 截断能收敛测试; (b) k点取值收敛测试; (c) α-Fe晶胞的能量收敛过程; (d) Fe-C(1)晶胞的能量收敛过程

    Fig. A1.  Convergence test: (a) Cut-off energy test; (b) k-point value test; (c) Energy convergence process of α-Fe; (d) Energy convergence process of Fe-C(1).

    图 2  掺杂元素对α-Fe体系磁特性的影响 (a) 2 × 2 × 2超晶胞及掺杂1个或2个原子的掺杂体系模型; (b) 不同类型应变作用下的能量增量 ΔE; (c) 不同类型应变作用下磁矩M的变化

    Fig. 2.  Effect of doping elements on magnetic properties of the α-Fe system: (a) 2 × 2 × 2 supercell structure and supercell structure doped with one or two atoms; (b) Energy increments (ΔE)under different types of strain; (c) Change of magnetic moment under different types of strain.

    图 3  拉伸、压缩和剪切应变作用下α-Fe的能带结构图 (a) 初始状态; (b) 5%拉应变; (c)5 %压应变; (d) 5%剪应变

    Fig. 3.  Band structure diagram of α-Fe under tensile, compression and shear strain: (a) Initial state; (b) 5% tensile strain; (c) 5% compressive strain; (d) 5% shear strain.

    图 A3  无应变作用下α-Fe及其Fe-C和Fe-Mn掺杂体系的能带结构 (a) α-Fe; (b) Fe-C(1); (c) Fe-C(2); (d) Fe-Mn

    Fig. A3.  Band structure of α-Fe and its C- and Mn-doped systems without strain: (a) α-Fe; (b) Fe-C(1); (c) Fe-C(2); (d) Fe-Mn.

    图 4  电子态密度图 (a) 不同体系自旋态密度; (b) 不同类型应变对掺杂体系DOS峰值的影响; (c) 不同类型应变加载对掺杂体系双峰间距的影响

    Fig. 4.  The density of states diagram: (a) Spin DOS of different systems; (b) Effects of different types of strain on DOS peaks of doping systems; (c) Effects of different types of strain loading on the spacing of double peaks in doping systems.

    图 A5  掺杂体系在不同应变类型作用下(拉伸、压缩和剪切)的自旋态密度图 (a) Fe-C(1)体系DOS; (b) Fe-C(2)体系DOS; (c) Fe-Mn体系DOS

    Fig. A5.  The spin density distribution of states of doping systems under different types of strain (tensile, compression and shear strain): (a) DOS changes of Fe-C(1) doping system; (b) DOS changes of Fe-C(1) doping system; (c) DOS changes of Fe-Mn doping system.

    图 5  C和Mn掺杂体系原子磁矩随三种不同应变加载方式(拉伸、压缩和剪切)的变化

    Fig. 5.  Variation of atomic magnetic moment with the three different types of strain loading (Tensile, compression and shear strain) for C- and Mn-doped systems.

    图 A2  SnO2能带结构图

    Fig. A2.  SnO2 band structure diagram.

    图 A4  不同轨道电子分波态密度 (a) Fe-C(1)分波态密度; (b) Fe-C(2)分波态密度; (c) Fe-Mn分波态密度

    Fig. A4.  Different orbitals of PDOS: (a) PDOS of Fe-C(1); (b) PDOS of Fe-C(2); (c) PDOS of Fe-Mn.

    表 A3  不同应变作用下α-Fe体系的磁矩和能量变化

    Table A3.  The magnetic moments and energies of a-Fe under different types of strain.

    Tensile strain Compressive strain Shear strain
    StrainMagnetic moment/
    (${\mu _{\text{B}}}{\cdot\text{ato}}{{\text{m}}^{ - 1}}$)
    Energy/
    eV
    Magnetic moment/
    (${\mu _{\text{B}}}{\cdot\text{ato}}{{\text{m}}^{ - 1}}$)
    Energy/
    eV
    Magnetic moment/
    (${\mu _{\text{B}}}{\cdot\text{ato}}{{\text{m}}^{ - 1}}$)
    Energy/
    eV
    1%2.1133–862.91762.1121–862.91782.1150–862.9175
    2%2.1168–862.91572.1114–862.91632.1265–862.9152
    3%2.1294–862.91252.1116–862.91572.1498–862.9112
    4%2.1303–862.91052.1121–862.91262.1878–862.9063
    5%2.1549–862.90812.1135–862.90972.2195–862.9006
    下载: 导出CSV

    表 A1  平衡态α-Fe及掺杂体系的自旋极化能

    Table A1.  Spin polarization energy of equilibrium α-Fe (BCC) and doping systems.

    Energy stateFe(bcc)Fe-C(1)Fe-C(2)Fe-Mn
    spin-polarized–862.9295–818.6694–774.3459–987.8903
    non-spin-polarized–862.4899–818.5050–774.3104–987.8903
    ΔE–0.4396–0.1644–0.0355–1×10–5
    下载: 导出CSV

    表 A2  平衡态α-Fe的晶格常数、原子体积和磁矩

    Table A2.  The lattice constant, atomic volume, and magnetic moment of equilibrium α-Fe(BCC).

    Structural properties
    of α-Fe (BCC)
    Lattice constant/
    Å
    Atomic volume/Å3Magnetic moment/
    (${\mu _{\text{B} } }{\cdot\text{ato} }{ {\text{m} }^{ - 1} }$)
    Present results 2.83311.362.17
    Reference results[25]2.81311.132.17
    [34]2.8311.332.17
    Experimental results[35]2.8711.782.22
    [36]2.86611.772.12
    下载: 导出CSV

    表 A4  三种不同应变加载方式下掺杂体系能量的变化(eV)

    Table A4.  Variation of the energy in doping systems under three different types of strain loading (eV).

    StrainTensile strainCompressive strainShear strain
    Fe-C(1)Fe-C(2)Fe-MnFe-C(1)Fe-C(2)Fe-Mn Fe-C(1)Fe-C(2)Fe-Mn
    1%–818.5083–774.3584–987.8857 –818.5039–774.3536–987.9533 –818.5257–774.3450–987.9536
    2%–818.5077–774.3543–987.8845–818.4965–774.3507–987.9679–818.5245–774.3420–987.9504
    3%–818.5016–774.3457–987.8827–818.4882–774.3469–987.9711–818.5186–774.3372–987.9446
    4%–818.5009–774.3446–987.8799–818.4794–774.3454–987.9652–818.5097–774.3307–987.9367
    5%–818.4967–774.3398–987.8762–818.4723–774.3425–987.9569–818.5026–774.3223–987.9267
    下载: 导出CSV

    表 A5  不同应变作用下掺杂体系的磁矩变化

    Table A5.  Variation of the total magnetic moment of doping systems under different strain states ($ {\mu }_{\mathrm{B}}) $.

    StrainTensile strain Compressive strain Shear strain
    Fe-C(1)Fe-C(2)Fe-Mn Fe-C(1)Fe-C(2)Fe-Mn Fe-C(1)Fe-C(2)Fe-Mn
    1%2.04331.98002.1084 2.00311.97531.9925 2.02991.97621.9959
    2%2.08871.98432.11421.96451.96932.10042.02421.97681.9974
    3%2.08871.98562.12261.91751.96942.11521.95661.97982.0006
    4%2.09271.98802.12551.87911.96422.12481.95641.98472.0037
    5%2.09521.98942.13431.85731.94362.13271.94441.99052.0118
    下载: 导出CSV
    Baidu
  • [1]

    De Sousa J M, Aguiar A L, Girão E C, Fonseca A F, Souza Filho A G, Galvão D S 2021 Chem. Phys 542 111052Google Scholar

    [2]

    李君, 刘立胜, 徐爽, 张金咏 2020 69 043102Google Scholar

    Li J, Liu L S, Xu S, Zhang J Y 2020 Acta Phys. Sin. 69 043102Google Scholar

    [3]

    Hadji S, Bouhemadou A, Haddadi K, Cherrad D, Khenata R, Bin-Omran S, Al-Douri Y 2020 Physica B 589 412213Google Scholar

    [4]

    Kohn W, Sham L J 1965 Phys. Rev 140 A1133Google Scholar

    [5]

    Han Z K, Sarker D, Ouyang R, Mazheika A, Gao Y, Levchenko S V 2021 Nat. Commun 12 1833Google Scholar

    [6]

    祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉 2021 70 178101Google Scholar

    Zhu P, Zhang Q, Gou H S, Wang P P, Shao P Z, Kobayashi Equo, Wu G H 2021 Acta Phys. Sin. 70 178101Google Scholar

    [7]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat. Commun 12 1Google Scholar

    [8]

    Shiojiri D, Iida T, Kadono T, Yamaguchi M, Kodama T, Yamaguchi S, Imai Y 2021 J. Appl. Phys 129 115101Google Scholar

    [9]

    Kohl M, Krevet B, Yeduru S R, Ezer Y, Sozinov A 2011 Smart Mater. Struct 20 094009Google Scholar

    [10]

    Daniel L, Rekik M, Hubert O 2014 Arch. Appl. Mech 84 1307Google Scholar

    [11]

    Shi P P, Zheng X J 2016 Nondestruct. Test. Eval 31 45Google Scholar

    [12]

    Jiles D C 1995 J. Phys. D 28 1537Google Scholar

    [13]

    Joule J P 1847 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 30 76Google Scholar

    [14]

    Corte-Leon P, Zhukova V, Blanco J M, et al. 2021 J. Alloys Compd 855 157460Google Scholar

    [15]

    Zhang J M, Nie Y Z, Wang X G, Xia Q L, Guo G H 2021 J. Magn. Magn. Mater 525 167687Google Scholar

    [16]

    Ray R B, Kaphle G C, Rai R K, Yadav D K, Paudel R, Paudyal D 2021 J. Alloys Compd 867 158906Google Scholar

    [17]

    Shi P P, Su S Q, Chen Z M 2020 J. Nondestruct. Eval 39 1Google Scholar

    [18]

    Dubov A A 2012 Chem. Petrol. Eng 47 837Google Scholar

    [19]

    Tanasienko A G, Suntsov S I, Dubov A A 2002 Chem. Petrol. Eng 38 624Google Scholar

    [20]

    Kuleev V G, Dubov A A, Lopatin V V 2002 Russ. J. Nondestruct. Test 38 343Google Scholar

    [21]

    Dubov A A 2015 Metallurgist 59 164Google Scholar

    [22]

    时朋朋, 郝帅 2020 70 034101Google Scholar

    Shi P P, Hao S 2020 Acta Phys. Sin. 70 034101Google Scholar

    [23]

    时朋朋 2021 力学学报 70 3341Google Scholar

    Shi P P 2021 Chin. J. Theor. Appl. Mech. 70 3341Google Scholar

    [24]

    Yang L J, Liu B, Chen L J 2013 NDT & E Int. 55 15Google Scholar

    [25]

    杨理践, 刘斌, 高松巍, 陈立佳 2013 62 086201Google Scholar

    Yang L J, Liu B, Gao S W, Chen L J 2013 Acta Phys. Sin. 62 086201Google Scholar

    [26]

    Essaoud S S, Jbara A S 2021 J. Magn. Magn. Mater 531 167984Google Scholar

    [27]

    Maskar E, Lamrani A F, Belaiche M, Es-Smairi A, Khuili M, Al-Qaisi S, Rai D P 2021 Surf. Interfaces 24 101051Google Scholar

    [28]

    Payne M C, Teter M P, Allan D C 1992 Rev. Mod. Phys 64 1045Google Scholar

    [29]

    Milman V, Winkler B, White J A 2000 Int. J. Quantum Chem 77 895

    [30]

    Stewart J C, Matthew D S, Chris J P, Phil J H, Matt I J, Keith R, Mike C P 2005 Z. Kristallogr 220 567Google Scholar

    [31]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys 110 5029Google Scholar

    [32]

    Marzari N, Vanderbilt D, Payne M C 1997 Phys. Rev. Lett 79 1337Google Scholar

    [33]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci 49 299Google Scholar

    [34]

    Rahman G, Kim I G 2008 J. Magn 13 124Google Scholar

    [35]

    Kittel C 2021 Introduction to Solid State Physics (8th Ed.)

    [36]

    Fang C M, Van Huis M A, Sluiter M H F, Zandbergen H W 2010 Acta Mater 58 2968Google Scholar

  • [1] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控.  , 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测.  , 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [4] 罗旭, 王丽红, 吕良, 曹书峰, 董学成, 赵建国. 基于面磁荷密度的金属磁记忆检测正演模型.  , 2022, 71(15): 154101. doi: 10.7498/aps.71.20220176
    [5] 时朋朋, 郝帅. 磁记忆检测的力磁耦合型磁偶极子理论及解析解.  , 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [6] 陈传文, 项阳. 正交各向异性双层交换弹簧薄膜的磁矩分布.  , 2016, 65(12): 127502. doi: 10.7498/aps.65.127502
    [7] 潘凤春, 林雪玲, 陈焕铭. 阳离子空位磁矩起因探讨.  , 2015, 64(17): 176101. doi: 10.7498/aps.64.176101
    [8] 董雪, 张国营, 夏往所, 黄逸佳, 胡风. Dy3Al5O12磁热性质研究.  , 2015, 64(17): 177502. doi: 10.7498/aps.64.177502
    [9] 黄逸佳, 张国营, 胡风, 夏往所, 刘海顺. PrNi2的磁和磁热性能研究.  , 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [10] 杨理践, 刘斌, 高松巍, 陈立佳. 金属磁记忆效应的第一性原理计算与实验研究.  , 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [11] 吕厚祥, 石德政, 谢征微. 铁磁/半导体(绝缘体)/铁磁异质结中渡越时间与两铁磁层磁矩夹角变化的关系.  , 2013, 62(20): 208502. doi: 10.7498/aps.62.208502
    [12] 李德俊, 米贤武, 邓科. 一维铁磁链中量子孤波的能级和磁矩.  , 2010, 59(10): 7344-7349. doi: 10.7498/aps.59.7344
    [13] 齐凯天, 杨传路, 李兵, 张岩, 盛勇. TinLa(n=1—7)的密度泛函研究.  , 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [14] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [15] 黄 整, 陈 波, 麻焕锋, 张秀兰, 高国强, 强伟荣, 孙光爱. 过渡族金属替代元素M对YFe11M系统的磁性质的影响.  , 2008, 57(3): 1867-1871. doi: 10.7498/aps.57.1867
    [16] 杨 致, 闫玉丽, 赵文杰, 雷雪玲, 葛桂贤, 罗有华. FeBN(N≤6)团簇的结构与磁性.  , 2007, 56(5): 2590-2595. doi: 10.7498/aps.56.2590
    [17] 王清林, 葛桂贤, 赵文杰, 雷雪玲, 闫玉丽, 杨 致, 罗有华. 密度泛函理论对CoBen(n=1—12)团簇结构和性质的研究.  , 2007, 56(6): 3219-3226. doi: 10.7498/aps.56.3219
    [18] 赵文杰, 杨 致, 闫玉丽, 雷雪玲, 葛桂贤, 王清林, 罗有华. 密度泛函理论计算GenFe(n=1—8)团簇的基态结构及其磁性.  , 2007, 56(5): 2596-2602. doi: 10.7498/aps.56.2596
    [19] 赵文杰, 王清林, 任凤竹, 罗有华. 第一性原理计算ZrnFe(n=2—13)团簇的基态结构及其磁性.  , 2007, 56(10): 5746-5753. doi: 10.7498/aps.56.5746
    [20] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究.  , 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
计量
  • 文章访问数:  4663
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-05-23
  • 上网日期:  2022-09-28
  • 刊出日期:  2022-10-05

/

返回文章
返回
Baidu
map