搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阳离子空位磁矩起因探讨

潘凤春 林雪玲 陈焕铭

引用本文:
Citation:

阳离子空位磁矩起因探讨

潘凤春, 林雪玲, 陈焕铭

Study on magnetic moment of cation-vacancy

Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming
PDF
导出引用
  • 运用群论和分子轨道理论的方法, 系统地研究了非掺杂磁性半导体中阳离子空位产生磁矩的原因, 并用海森堡模型阐明了磁矩之间的交换耦合机理. 研究发现: 阳离子空位磁矩的大小与占据缺陷能级轨道的未配对电子数有关, 而缺陷能级的分布与空位的晶场对称性密切相关; 通过体系的反铁磁状态和铁磁状态下的能量差估算交换耦合系数J0, 交换耦合系数J0的正负可以用来预测磁矩之间的耦合是否为铁磁耦合:J0>0, 则表明磁矩之间的耦合为铁磁耦合, 反之为反铁磁耦合. 最后指出空位的几何构型发生畸变(John-Teller效应)的原因: 缺陷能级轨道简并度的降低与占据缺陷能级轨道的电子的数目有直接的关系.
    We use the group theory and molecular orbital theory to systematically study the origin of magnetic moment of cation-vacancy in un-doped magnetic semiconductors, and illustrate the mechanism of exchange-coupling between magnetic moments by Heisenberg model. It is found that the magnetic moment is related to the number of unpaired electrons, and the distribution of defects energy level is correlated closely with the symmetry of vacancy crystal field. The exchange-coupling coefficients J0 is estimated by the energy difference between antiferromagnetic and ferromagnetic states. And J0 can be used to predict the magnetic coupling. Positive J0 means the ferromagnetic coupling between magnetic moments, otherwise the coupling is antiferromagnetic. Moreover, we indicate that reduction of degeneracy of defect energy-level bears a direct relationship to the electron number occupied in the defect energy-level orbital, and therefore results in the structure distortion (John-Teller effect) of a cation-vacancy.
      通信作者: 林雪玲, 13995116713@163.com
    • 基金项目: 国家自然科学基金(批准号: 11447160)和宁夏高等学校科学研究项目(批准号: NGY2014048)资助的课题.
      Corresponding author: Lin Xue-Ling, 13995116713@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11447160), and the Higher School Science Research Project of Ningxia, China (Grant No. NGY2014048).
    [1]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [2]

    Ohno H 1998 Science 281 951

    [3]

    Ohno H, Munekata H, von Molnár S, Chang L 1991 J. Appl. Phys. 69 6103

    [4]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363

    [5]

    Park Y D, Hanbicki A T, Erwin S C, Hellberg C S, Sullivan J M, Mattson J E, Ambrose T F, Wilson A, Spanos G, Jonker B T 2002 Science 295 651

    [6]

    Li A P, Wendelken J F, Shen J, Feldman L C, Thompson J R, Weitering H H 2005 Phys. Rev. B 72 195205

    [7]

    Gareev R, Bugoslavsky Yu V, Schreiber R, Paul A, Sperl M, Döppe M 2006 Appl. Phys. Lett. 88 222508

    [8]

    Tsui F, He L, Ma L, Tkachuk A, Chu Y S, Nakajima K, Chikyow T 2003 Phys. Rev. Lett. 91 177203

    [9]

    Shuto Y, Tanaka M, Sugahara S 2006 J. Appl. Phys. 99 08D516

    [10]

    Chen Y X, Yan S S, Fang Y, Tian Y F, Xiao S Q, Liu G L, Liu Y H, Mei L M 2007 Appl. Phys. Lett. 90 052508

    [11]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Nature 287 1019

    [12]

    Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D, Feng Y P 2008 Phys. Rev. B 78 073306

    [13]

    Sato K, Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. 39 L555

    [14]

    Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. 38 L166

    [15]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Osorio Guillen J M, Johansson B, Gethring G A 2003 Nature Mat. 2 673

    [16]

    Park J H, Kim M G, Jang H M, Ryu S, Kim Y M 2004 Appl. Phys. Lett. 84 1338

    [17]

    Shim J H, Hwang T, Lee S, Park J H, Han S J, Jeong Y H 2015 Appl. Phys. Lett. 86 082503

    [18]

    Liu G L, Cao Q, Deng J X, Xing P F, Tian Y F, Chen Y X, Yan S S, Mei L M 2007 Appl. Phys. Lett. 90 052504

    [19]

    Xie L L, Chen S Y, Liu F J, Zhang J M, Lin Y B, Huang Z G 2014 Acta Phys. Sin. 63 077102 (in Chinese) [谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高 2014 63 077102]

    [20]

    Wang F, Wang Y Y, Huang W W, Zhang X T, Li S Y 2012 Acta Phys. Sin. 61 157503 (in Chinese) [王锋, 王月燕, 黄伟伟, 张小婷, 李珊瑜 2012 61 157503]

    [21]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630

    [22]

    Liu Y, Wang G, Wang S, Yang J, Chen L, Qin X, Song B, Wang B, Chen X 2011 Phys. Rev. Lett. 106 087205

    [23]

    Song B, Bao H, Li H, Lei M, Peng T, Jian J, Liu J, Wang W, Wang W, Chen X 2009 J. Am. Chem. Soc. 131 1376

    [24]

    Wang G X 1986 Atomic Orbital and Molecular Orbital (Higher Education Press) p168 (in Chinese) [王国雄 1986 原子轨道与分子轨道 (高等教育出版社) 第168页]

    [25]

    Lin X L, Yan S S, Zhao M W, Hu S J, Han C, Chen Y X, Liu G L, Dai Y Y, Mei L M 2011 Phys. Lett. A 375 678

    [26]

    Lin X L, Pan F C 2014 Journal of Shandong University (Natural Science) 49 3 (in Chinese) [林雪玲, 潘凤春 2014 山东大学学报(理学版) 49 3]

    [27]

    Wang X P, Zhao M W, He T, Wang Z H, Liu X 2013 Appl. Phys. Lett. 102 062411

    [28]

    Lin X L, Pan F C 2013 Acta Phys. Sin. 62 166102 (in Chinese) [林雪玲, 潘凤春 2013 62 166102]

    [29]

    Pan F C, Zhao M W, Mei L M 2010 J. Appl. Phys 108 043917

    [30]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009 Phys. Rev. B 80 144424

    [31]

    Rahman G, García-Suárez V M, Hong S C 2008 Phys. Rev. B 78 184404

    [32]

    Fernandes V, Mossanek R J O, Schio P, Klein J J, de Oliveira A J A, Ortiz W A, Mattoso N, Varalda J, Schreiner W H, Abbate M, Mosca D H 2009 Phys. Rev. B 80 035202

    [33]

    Dev P, Xue Y, Zhang P H 2008 Phys. Rev. Lett. 100 117204

    [34]

    Kim D, Yang J, Hong J 2009 J. Appl. Phys 106 013908

    [35]

    Lin X L, Pan F C, Chen H M, Wang X M 2014 J. Supercond. Nov. Magn. 27 2397

  • [1]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [2]

    Ohno H 1998 Science 281 951

    [3]

    Ohno H, Munekata H, von Molnár S, Chang L 1991 J. Appl. Phys. 69 6103

    [4]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363

    [5]

    Park Y D, Hanbicki A T, Erwin S C, Hellberg C S, Sullivan J M, Mattson J E, Ambrose T F, Wilson A, Spanos G, Jonker B T 2002 Science 295 651

    [6]

    Li A P, Wendelken J F, Shen J, Feldman L C, Thompson J R, Weitering H H 2005 Phys. Rev. B 72 195205

    [7]

    Gareev R, Bugoslavsky Yu V, Schreiber R, Paul A, Sperl M, Döppe M 2006 Appl. Phys. Lett. 88 222508

    [8]

    Tsui F, He L, Ma L, Tkachuk A, Chu Y S, Nakajima K, Chikyow T 2003 Phys. Rev. Lett. 91 177203

    [9]

    Shuto Y, Tanaka M, Sugahara S 2006 J. Appl. Phys. 99 08D516

    [10]

    Chen Y X, Yan S S, Fang Y, Tian Y F, Xiao S Q, Liu G L, Liu Y H, Mei L M 2007 Appl. Phys. Lett. 90 052508

    [11]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Nature 287 1019

    [12]

    Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D, Feng Y P 2008 Phys. Rev. B 78 073306

    [13]

    Sato K, Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. 39 L555

    [14]

    Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. 38 L166

    [15]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Osorio Guillen J M, Johansson B, Gethring G A 2003 Nature Mat. 2 673

    [16]

    Park J H, Kim M G, Jang H M, Ryu S, Kim Y M 2004 Appl. Phys. Lett. 84 1338

    [17]

    Shim J H, Hwang T, Lee S, Park J H, Han S J, Jeong Y H 2015 Appl. Phys. Lett. 86 082503

    [18]

    Liu G L, Cao Q, Deng J X, Xing P F, Tian Y F, Chen Y X, Yan S S, Mei L M 2007 Appl. Phys. Lett. 90 052504

    [19]

    Xie L L, Chen S Y, Liu F J, Zhang J M, Lin Y B, Huang Z G 2014 Acta Phys. Sin. 63 077102 (in Chinese) [谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高 2014 63 077102]

    [20]

    Wang F, Wang Y Y, Huang W W, Zhang X T, Li S Y 2012 Acta Phys. Sin. 61 157503 (in Chinese) [王锋, 王月燕, 黄伟伟, 张小婷, 李珊瑜 2012 61 157503]

    [21]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630

    [22]

    Liu Y, Wang G, Wang S, Yang J, Chen L, Qin X, Song B, Wang B, Chen X 2011 Phys. Rev. Lett. 106 087205

    [23]

    Song B, Bao H, Li H, Lei M, Peng T, Jian J, Liu J, Wang W, Wang W, Chen X 2009 J. Am. Chem. Soc. 131 1376

    [24]

    Wang G X 1986 Atomic Orbital and Molecular Orbital (Higher Education Press) p168 (in Chinese) [王国雄 1986 原子轨道与分子轨道 (高等教育出版社) 第168页]

    [25]

    Lin X L, Yan S S, Zhao M W, Hu S J, Han C, Chen Y X, Liu G L, Dai Y Y, Mei L M 2011 Phys. Lett. A 375 678

    [26]

    Lin X L, Pan F C 2014 Journal of Shandong University (Natural Science) 49 3 (in Chinese) [林雪玲, 潘凤春 2014 山东大学学报(理学版) 49 3]

    [27]

    Wang X P, Zhao M W, He T, Wang Z H, Liu X 2013 Appl. Phys. Lett. 102 062411

    [28]

    Lin X L, Pan F C 2013 Acta Phys. Sin. 62 166102 (in Chinese) [林雪玲, 潘凤春 2013 62 166102]

    [29]

    Pan F C, Zhao M W, Mei L M 2010 J. Appl. Phys 108 043917

    [30]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009 Phys. Rev. B 80 144424

    [31]

    Rahman G, García-Suárez V M, Hong S C 2008 Phys. Rev. B 78 184404

    [32]

    Fernandes V, Mossanek R J O, Schio P, Klein J J, de Oliveira A J A, Ortiz W A, Mattoso N, Varalda J, Schreiner W H, Abbate M, Mosca D H 2009 Phys. Rev. B 80 035202

    [33]

    Dev P, Xue Y, Zhang P H 2008 Phys. Rev. Lett. 100 117204

    [34]

    Kim D, Yang J, Hong J 2009 J. Appl. Phys 106 013908

    [35]

    Lin X L, Pan F C, Chen H M, Wang X M 2014 J. Supercond. Nov. Magn. 27 2397

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测.  , 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [3] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [4] 陈传文, 项阳. 正交各向异性双层交换弹簧薄膜的磁矩分布.  , 2016, 65(12): 127502. doi: 10.7498/aps.65.127502
    [5] 吕厚祥, 石德政, 谢征微. 铁磁/半导体(绝缘体)/铁磁异质结中渡越时间与两铁磁层磁矩夹角变化的关系.  , 2013, 62(20): 208502. doi: 10.7498/aps.62.208502
    [6] 龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮. 不同对称性下晶界结构演化及微观机理的晶体相场法研究.  , 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [7] 葛伟宽, 张毅, 薛纭. Rosenberg问题的对称性与守恒量.  , 2010, 59(7): 4434-4436. doi: 10.7498/aps.59.4434
    [8] 丁光涛. 构造Birkhoff表示的Hojman方法与Birkhoff对称性.  , 2010, 59(6): 3643-3647. doi: 10.7498/aps.59.3643
    [9] 李德俊, 米贤武, 邓科. 一维铁磁链中量子孤波的能级和磁矩.  , 2010, 59(10): 7344-7349. doi: 10.7498/aps.59.7344
    [10] 丁光涛. 规范变换对Birkhoff系统对称性的影响.  , 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [11] 路凯, 方建会, 张明江, 王鹏. 相空间中离散完整系统的Noether对称性和Mei对称性.  , 2009, 58(11): 7421-7425. doi: 10.7498/aps.58.7421
    [12] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [13] 杨 致, 闫玉丽, 赵文杰, 雷雪玲, 葛桂贤, 罗有华. FeBN(N≤6)团簇的结构与磁性.  , 2007, 56(5): 2590-2595. doi: 10.7498/aps.56.2590
    [14] 王清林, 葛桂贤, 赵文杰, 雷雪玲, 闫玉丽, 杨 致, 罗有华. 密度泛函理论对CoBen(n=1—12)团簇结构和性质的研究.  , 2007, 56(6): 3219-3226. doi: 10.7498/aps.56.3219
    [15] 赵文杰, 杨 致, 闫玉丽, 雷雪玲, 葛桂贤, 王清林, 罗有华. 密度泛函理论计算GenFe(n=1—8)团簇的基态结构及其磁性.  , 2007, 56(5): 2596-2602. doi: 10.7498/aps.56.2596
    [16] 赵文杰, 王清林, 任凤竹, 罗有华. 第一性原理计算ZrnFe(n=2—13)团簇的基态结构及其磁性.  , 2007, 56(10): 5746-5753. doi: 10.7498/aps.56.5746
    [17] 吴惠彬, 梅凤翔. Lagrange系统在施加陀螺力后的对称性.  , 2005, 54(6): 2474-2477. doi: 10.7498/aps.54.2474
    [18] 罗绍凯. 奇异系统Hamilton正则方程的Mei对称性、Noether对称性和Lie对称性.  , 2004, 53(1): 5-10. doi: 10.7498/aps.53.5
    [19] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究.  , 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [20] 艾树涛, 钟维烈, 王春雷, 王矜奉, 张沛霖. 铁性体中畴结构产生的热力学描述.  , 2002, 51(2): 279-285. doi: 10.7498/aps.51.279
计量
  • 文章访问数:  6346
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-17
  • 修回日期:  2015-04-14
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map