搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质

张英楠 张敏 张派 胡文博

引用本文:
Citation:

基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质

张英楠, 张敏, 张派, 胡文博

Investigation of electronic structure and optoelectronic properties of Si-doped β-Ga2O3 using GGA+U method based on first-principle

Zhang Ying-Nan, Zhang Min, Zhang Pai, Hu Wen-Bo
PDF
HTML
导出引用
  • 采用基于密度泛函理论的GGA+U方法, 计算了本征和Si掺杂β-Ga2O3的形成能、能带结构、态密度、差分电荷密度和光电性质. 结果表明, Si取代四面体Ga(1)更容易实验合成, 得到的β-Ga2O3带隙和Ga-3d态峰值与实验结果吻合较好, 且贫氧条件下更倾向于获得有效掺杂. Si掺杂后, 总能带向低能端移动, 费米能级进入导带, 呈现n型导电性; Si-3s轨道电子占据导带底, 电子公有化程度加强, 电导率明显改善. 随着Si掺杂浓度的增加, 介电函数ε2(ω)的结果表明, 激发导电电子的能力先增强后减弱, 与电导率的量化分析结果一致. 光学带隙增大, 吸收带边上升速度减慢; 吸收光谱结果显示Si掺杂β-Ga2O3具有较强的深紫外光电探测能力. 计算结果将为下一步Si掺杂β-Ga2O3实验研究和器件设计的创新及优化提供理论参考.
    In this work, the formation energy, band structure, state density, differential charge density and optoelectronic properties of undoped β-Ga2O3 and Si doped β-Ga2O3 are calculated by using GGA+U method based on density functional theory. The results show that the Si-substituted tetrahedron Ga(1) is more easily synthesized experimentally, and the obtained β-Ga2O3 band gap and Ga-3d state peak are in good agreement with the experimental results, and the effective doping is more likely to be obtained under oxygen-poor conditions. After Si doping, the total energy band moves toward the low-energy end, and Fermi level enters the conduction band, showing n-type conductive characteristic. The Si-3s orbital electrons occupy the bottom of the conduction band, the degree of electronic occupancy is strengthened, and the conductivity is improved. The results from dielectric function ε2(ω) show that with the increase of Si doping concentration, the ability to stimulate conductive electrons first increases and then decreases, which is in good agreement with the quantitative analysis results of conductivity. The optical band gap increases and the absorption band edge rises slowly with the increase of Si doping concentration. The results of absorption spectra show that Si-doped β-Ga2O3 has the ability to realize the strong deep ultraviolet photoelectric detection. The calculated results provide a theoretical reference for further implementing the experimental investigation and the optimization innovation of Si-doped β-Ga2O3 and relative device design.
      通信作者: 张敏, m.zhang@live.com
    • 基金项目: 兴辽英才计划(批准号: XLYC1807170)和教育部产学合作协同育人项目(批准号: 220900575223357)资助的课题.
      Corresponding author: Zhang Min, m.zhang@live.com
    • Funds: Project supported by the Liaoning Revitalization Talents Program, China (Grant No. XLYC1807170) and the University-Industry Collaborative Education Program of Ministry of Education, China (Grant No. 220900575223357).
    [1]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    况丹, 徐爽, 史大为, 郭建, 喻志农 2023 72 038501Google Scholar

    Kuang D, Xu S, Shi D W, Guo J, Yu Z N 2023 Acta Phys. Sin. 72 038501Google Scholar

    [4]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [5]

    Mi W, Li Z, Luan C N, Xiao H D, Zhao C S, Ma J 2015 Ceram. Int. 41 2572Google Scholar

    [6]

    Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, Yamakoshi S 2016 Semicond. Sci. and Technol. 31 034001Google Scholar

    [7]

    Higashiwaki M, Jessen G H 2018 Appl. Phys. Lett. 112 060401Google Scholar

    [8]

    Hou Y, Jayatissa A H 2014 Sens. Actuators, B 204 310Google Scholar

    [9]

    Zhang L Y, Yan J L, Zhang Y J, Li T, Ding X W 2012 Phys. B: Condens. Matter 407 1227Google Scholar

    [10]

    Leedy K D, Chabak K D, Vasilyev V, Look D C, Boeckl J J, Brown J L, Tetlak S E, Green A J, Moser N A, Crespo A, Thomson D B, Fitch R C, McCandless J P, Jessen G H 2017 Appl. Phys. Lett. 111 012103Google Scholar

    [11]

    Zhang Y J, Yan J L, Zhao G, Xie W F 2010 Phys. B: Condens. Matter 405 3899Google Scholar

    [12]

    Ahmadi E, Koksaldi O S, Kaun S W, Oshima Y, Short D B, Mishra U K, Speck J S 2017 Appl. Phys. Express 10 041102Google Scholar

    [13]

    Yan H Y, Guo Y R, Song Q G, Chen Y F 2014 Phys. B: Condens. Matter 434 181Google Scholar

    [14]

    Chen Z W, Wang X, Noda S, Saito K, Tanaka T, Nishio M, Arita M, Guo Q X 2016 Superlattices Microstruct. 90 207Google Scholar

    [15]

    Guo Q X, Nishihagi K, Chen Z W, Saito K, Tanaka T 2017 Thin Solid Films 639 123Google Scholar

    [16]

    Hu D Q, Wang Y, Zhuang S W, Dong X, Zhang Y T, Yin J Z, Zhang B L, Lv Y J, Feng Z H, Du G T 2018 Ceram. Int. 44 3122Google Scholar

    [17]

    Xu C X, Liu H, Pan X H, Ye Z Z 2020 Opt. Mater. 108 110145Google Scholar

    [18]

    Varley J B, Weber J R, Janotti A, Van de Walle C G 2010 Appl. Phys. Lett. 97 142106Google Scholar

    [19]

    Takakura K, Koga D, Ohyama H, Rafi J M, Kayamoto Y, Shibuya M, Yamamoto H, Vanhellemont J 2009 Phys. B: Condens. Matter 404 4854Google Scholar

    [20]

    Gogova D, Wagner G, Baldini M, Schmidbauer M, Irmscher K, Schewski R, Galazka Z, Albrecht M, Fornari R 2014 J. Cryst. Growth 401 665Google Scholar

    [21]

    张易军, 闫金良, 赵刚, 谢万峰 2011 60 037103Google Scholar

    Zhang Y J, Yan J L, Zhao G, Xie W F 2011 Acta Phys. Sin. 60 037103Google Scholar

    [22]

    Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [23]

    Li Y, Yang C H, Wu L Y, Zhang R 2017 Mod. Phys. Lett. B 31 1750172Google Scholar

    [24]

    Dang J N, Zheng S W, Chen L, Zheng T 2019 Chin. Phys. B 28 016301Google Scholar

    [25]

    马海林, 苏庆 2014 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [26]

    Dong L P, Jia R X, Xin B, Peng B, Zhang Y M 2017 Sci. Rep. 7 40160Google Scholar

    [27]

    Wei W, Qin Z X, Fan S F, Li Z W, Shi K, Sheng Z Q, Yi Z G 2012 Nanoscale Res. Lett. 7 562Google Scholar

    [28]

    He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I, Rérat M 2006 Phys. Rev. B 74 195123Google Scholar

    [29]

    Zheng T, Wang Q, Dang J N, He W, Wang L Y, Zheng S W 2020 Comput. Mater. Sci. 174 109505Google Scholar

    [30]

    Shu T K, Miao R X, Guo S D, Wang S Q, Zhao C H, Zhang X L 2020 Chin. Phys. B 29 126301Google Scholar

    [31]

    Kang B K, Mang S R, Go D H, Yoon D H 2013 Mater. Lett. 111 67Google Scholar

    [32]

    Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K, Tanaka I 2007 J. Phys. Condens. Matter 19 346211Google Scholar

    [33]

    Víllora E G, Shimamura K, Yoshikawa Y, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 202120Google Scholar

    [34]

    Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K, Fornari R, Michling M, Schmeißer D, Weber J R, Varley J B, Van de Walle C G 2011 New J. Phys. 13 085014Google Scholar

    [35]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [36]

    Yang X Y, Wen S M, Chen D D, Li T, Zhao C W 2022 Phys. Lett. A 433 128025Google Scholar

    [37]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71Google Scholar

    [38]

    落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪 2023 72 028502Google Scholar

    Luo J X, Gao H L, Deng J X, Ren J H, Zhang Q, Li R D, Meng X 2023 Acta Phys. Sin. 72 028502Google Scholar

    [39]

    Oshima T, Matsuyama K, Yoshimatsu K, Ohtomo A 2015 J. Cryst. Growth 421 23Google Scholar

    [40]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y 2008 Phys. Status Solidi C 5 3088Google Scholar

    [41]

    Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15Google Scholar

    [42]

    Litimein F, Rached D, Khenata R, Baltache H 2009 J. Alloys Compd. 488 148Google Scholar

    [43]

    Shimamura K, Víllora E G, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 201914Google Scholar

    [44]

    Mondal A K, Mohamed M A, Ping L K, Mohamad Taib M F, Samat M H, Mohammad Haniff M A S, Bahru R 2021 Materials (Basel). 14 604Google Scholar

    [45]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [46]

    Sarkar A, Ghosh S, Chaudhuri S, Pal A K 1991 Thin Solid Films 204 255Google Scholar

    [47]

    Reynolds D C, Look D C, Jogai B 2000 J. Appl. Phys. 88 5760Google Scholar

    [48]

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102 [郑树文, 范广涵, 何苗, 赵灵智 2014 63 057102Google Scholar

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102Google Scholar

    [49]

    Hou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102 [侯清玉, 吕致远, 赵春旺 2014 63 197102Google Scholar

    Hou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102Google Scholar

    [50]

    Liu J F, Gao S S, Li W X, Dai J F, Suo Z Q, Suo Z T 2021 Cryst. Res. Technol. 57 2100126Google Scholar

  • 图 1  Si掺杂β-Ga2O3的1×2×2超胞模型, Ga(1)和Ga(2)分别表示四面体和八面体位置

    Fig. 1.  1×2×2 supercell model of Si-doped β-Ga2O3, where Ga(1) and Ga(2) represent tetrahedral and octahedral positions, respectively.

    图 2  原胞和超胞模型 (a) Ga8O12; (b) Ga31O48Si1 (1×2×2); (c) Ga23O36Si1 (1×3×1); (d) Ga15O24Si1 (1×2×1); (e) Ga7O12Si1

    Fig. 2.  (a) Primitive cell and supercell models: (a) Ga8O12; (b) Ga31O48Si1 (1×2×2); (c) Ga23O36Si1 (1×3×1); (d) Ga15O24Si1 (1×2×1); (e) Ga7O12Si1.

    图 3  β-Ga2O3的能带结构和对应的态密度图谱 (a) GGA; (b) GGA+U

    Fig. 3.  Band structure and corresponding density of states plots of β-Ga2O3: (a) GGA; (b) GGA+U.

    图 4  不同Si掺杂浓度的能带结构图谱 (a) 1.25% (Ga31O48Si1); (b) 1.67% (Ga23O36Si1); (c) 2.50% (Ga15O24Si1); (d) 5.00% (Ga7O12Si1)

    Fig. 4.  Band structure plots of β-Ga2O3 with different Si doping concentrations: (a) 1.25% (Ga31O48Si1); (b) 1.67% (Ga23O36Si1); (c) 2.50% (Ga15O24Si1); (d) 5.00% (Ga7O12Si1).

    图 5  不同Si掺杂浓度的DOS图谱 (a) 0% (Ga8O12); (b) 1.67% (Ga23O36Si1); (c) 5.00% (Ga7O12Si1). (d) 不同Si掺杂浓度的PDOS图谱

    Fig. 5.  DOS for different Si doping concentrations: (a) 0% (Ga8O12); (b) 1.67% (Ga23O36Si1); (c) 5.00% (Ga7O12Si1). (d) PDOS for different Si doping concentrations.

    图 6  未掺杂(a)和Si掺杂浓度为5.00% (b)的β-Ga2O3 010面差分电荷密度分布图

    Fig. 6.  Differential charge density distribution of undoped (a) and Si-doped β-Ga2O3 (010) surface with a doping atomic concentration of 5.00% (b).

    图 7  未掺杂和不同浓度Si掺杂β-Ga2O3的介电函数虚部

    Fig. 7.  Imaginary part of dielectric function of undoped and Si-doped β-Ga2O3 with different Si concentrations.

    图 8  未掺杂和不同浓度Si掺杂β-Ga2O3的吸收光谱, 插图为局部区域(300—790 nm)吸收光谱放大图

    Fig. 8.  Absorption spectra of undoped and Si-doped β-Ga2O3 with different Si concentrations, illustrated as enlarged absorption spectra of a local region (300–790 nm).

    表 1  GGA+U方法优化后未掺杂和Si掺杂β-Ga2O3的晶格参数

    Table 1.  Lattice parameters of undoped and Si-doped β-Ga2O3 optimized using GGA+U method.

    Models a b c β V3 Ef/eV
    O-Rich O-Poor
    β-Ga2O3 Exp.[32] 12.220 3.038 5.786
    0% 12.276 3.065 5.845 104.050 213.329
    1.25% 12.359 3.061 5.844 104.025 214.469 5.479 –3.301
    1.67% 12.347 3.063 5.847 104.117 214.511 6.121 –2.659
    2.50% 12.391 3.061 5.843 104.058 214.961 6.471 –2.309
    5.00% 12.719 3.031 5.817 103.047 218.442 6.638 –2.142
    下载: 导出CSV
    Baidu
  • [1]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    况丹, 徐爽, 史大为, 郭建, 喻志农 2023 72 038501Google Scholar

    Kuang D, Xu S, Shi D W, Guo J, Yu Z N 2023 Acta Phys. Sin. 72 038501Google Scholar

    [4]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [5]

    Mi W, Li Z, Luan C N, Xiao H D, Zhao C S, Ma J 2015 Ceram. Int. 41 2572Google Scholar

    [6]

    Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, Yamakoshi S 2016 Semicond. Sci. and Technol. 31 034001Google Scholar

    [7]

    Higashiwaki M, Jessen G H 2018 Appl. Phys. Lett. 112 060401Google Scholar

    [8]

    Hou Y, Jayatissa A H 2014 Sens. Actuators, B 204 310Google Scholar

    [9]

    Zhang L Y, Yan J L, Zhang Y J, Li T, Ding X W 2012 Phys. B: Condens. Matter 407 1227Google Scholar

    [10]

    Leedy K D, Chabak K D, Vasilyev V, Look D C, Boeckl J J, Brown J L, Tetlak S E, Green A J, Moser N A, Crespo A, Thomson D B, Fitch R C, McCandless J P, Jessen G H 2017 Appl. Phys. Lett. 111 012103Google Scholar

    [11]

    Zhang Y J, Yan J L, Zhao G, Xie W F 2010 Phys. B: Condens. Matter 405 3899Google Scholar

    [12]

    Ahmadi E, Koksaldi O S, Kaun S W, Oshima Y, Short D B, Mishra U K, Speck J S 2017 Appl. Phys. Express 10 041102Google Scholar

    [13]

    Yan H Y, Guo Y R, Song Q G, Chen Y F 2014 Phys. B: Condens. Matter 434 181Google Scholar

    [14]

    Chen Z W, Wang X, Noda S, Saito K, Tanaka T, Nishio M, Arita M, Guo Q X 2016 Superlattices Microstruct. 90 207Google Scholar

    [15]

    Guo Q X, Nishihagi K, Chen Z W, Saito K, Tanaka T 2017 Thin Solid Films 639 123Google Scholar

    [16]

    Hu D Q, Wang Y, Zhuang S W, Dong X, Zhang Y T, Yin J Z, Zhang B L, Lv Y J, Feng Z H, Du G T 2018 Ceram. Int. 44 3122Google Scholar

    [17]

    Xu C X, Liu H, Pan X H, Ye Z Z 2020 Opt. Mater. 108 110145Google Scholar

    [18]

    Varley J B, Weber J R, Janotti A, Van de Walle C G 2010 Appl. Phys. Lett. 97 142106Google Scholar

    [19]

    Takakura K, Koga D, Ohyama H, Rafi J M, Kayamoto Y, Shibuya M, Yamamoto H, Vanhellemont J 2009 Phys. B: Condens. Matter 404 4854Google Scholar

    [20]

    Gogova D, Wagner G, Baldini M, Schmidbauer M, Irmscher K, Schewski R, Galazka Z, Albrecht M, Fornari R 2014 J. Cryst. Growth 401 665Google Scholar

    [21]

    张易军, 闫金良, 赵刚, 谢万峰 2011 60 037103Google Scholar

    Zhang Y J, Yan J L, Zhao G, Xie W F 2011 Acta Phys. Sin. 60 037103Google Scholar

    [22]

    Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [23]

    Li Y, Yang C H, Wu L Y, Zhang R 2017 Mod. Phys. Lett. B 31 1750172Google Scholar

    [24]

    Dang J N, Zheng S W, Chen L, Zheng T 2019 Chin. Phys. B 28 016301Google Scholar

    [25]

    马海林, 苏庆 2014 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [26]

    Dong L P, Jia R X, Xin B, Peng B, Zhang Y M 2017 Sci. Rep. 7 40160Google Scholar

    [27]

    Wei W, Qin Z X, Fan S F, Li Z W, Shi K, Sheng Z Q, Yi Z G 2012 Nanoscale Res. Lett. 7 562Google Scholar

    [28]

    He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I, Rérat M 2006 Phys. Rev. B 74 195123Google Scholar

    [29]

    Zheng T, Wang Q, Dang J N, He W, Wang L Y, Zheng S W 2020 Comput. Mater. Sci. 174 109505Google Scholar

    [30]

    Shu T K, Miao R X, Guo S D, Wang S Q, Zhao C H, Zhang X L 2020 Chin. Phys. B 29 126301Google Scholar

    [31]

    Kang B K, Mang S R, Go D H, Yoon D H 2013 Mater. Lett. 111 67Google Scholar

    [32]

    Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K, Tanaka I 2007 J. Phys. Condens. Matter 19 346211Google Scholar

    [33]

    Víllora E G, Shimamura K, Yoshikawa Y, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 202120Google Scholar

    [34]

    Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K, Fornari R, Michling M, Schmeißer D, Weber J R, Varley J B, Van de Walle C G 2011 New J. Phys. 13 085014Google Scholar

    [35]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [36]

    Yang X Y, Wen S M, Chen D D, Li T, Zhao C W 2022 Phys. Lett. A 433 128025Google Scholar

    [37]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71Google Scholar

    [38]

    落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪 2023 72 028502Google Scholar

    Luo J X, Gao H L, Deng J X, Ren J H, Zhang Q, Li R D, Meng X 2023 Acta Phys. Sin. 72 028502Google Scholar

    [39]

    Oshima T, Matsuyama K, Yoshimatsu K, Ohtomo A 2015 J. Cryst. Growth 421 23Google Scholar

    [40]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y 2008 Phys. Status Solidi C 5 3088Google Scholar

    [41]

    Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15Google Scholar

    [42]

    Litimein F, Rached D, Khenata R, Baltache H 2009 J. Alloys Compd. 488 148Google Scholar

    [43]

    Shimamura K, Víllora E G, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 201914Google Scholar

    [44]

    Mondal A K, Mohamed M A, Ping L K, Mohamad Taib M F, Samat M H, Mohammad Haniff M A S, Bahru R 2021 Materials (Basel). 14 604Google Scholar

    [45]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [46]

    Sarkar A, Ghosh S, Chaudhuri S, Pal A K 1991 Thin Solid Films 204 255Google Scholar

    [47]

    Reynolds D C, Look D C, Jogai B 2000 J. Appl. Phys. 88 5760Google Scholar

    [48]

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102 [郑树文, 范广涵, 何苗, 赵灵智 2014 63 057102Google Scholar

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102Google Scholar

    [49]

    Hou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102 [侯清玉, 吕致远, 赵春旺 2014 63 197102Google Scholar

    Hou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102Google Scholar

    [50]

    Liu J F, Gao S S, Li W X, Dai J F, Suo Z Q, Suo Z T 2021 Cryst. Res. Technol. 57 2100126Google Scholar

  • [1] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算.  , 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [2] 高立科, 赵先豪, 刁心峰, 唐天宇, 唐延林. 第一性原理对CsSnBr3施加静水压力后光电性质的探究.  , 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [3] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算.  , 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [4] 周诗文, 彭平, 陈文钦, 庾名槐, 郭惠, 袁珍. Ce和O空位共掺杂TiO2的电子结构与光学性质.  , 2019, 68(3): 037101. doi: 10.7498/aps.68.20181946
    [5] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质.  , 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [6] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质.  , 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [7] 程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂. Cu,O共掺杂AlN晶体电子结构与光学性质研究.  , 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [8] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究.  , 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [9] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响.  , 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [10] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究.  , 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [11] 高潭华, 刘慧英, 张鹏, 吴顺情, 杨勇, 朱梓忠. Al掺杂的尖晶石型LiMn2O4的结构和电子性质.  , 2012, 61(18): 187306. doi: 10.7498/aps.61.187306
    [12] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质.  , 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [13] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究.  , 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [14] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究.  , 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [15] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究.  , 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [16] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [17] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究.  , 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [18] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质.  , 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [19] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究.  , 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
    [20] 张 勇, 唐超群, 戴 君. Rb2TeW3O12电子结构及光学性质的第一性原理研究.  , 2005, 54(2): 868-874. doi: 10.7498/aps.54.868
计量
  • 文章访问数:  3279
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-16
  • 修回日期:  2023-09-17
  • 上网日期:  2023-10-08
  • 刊出日期:  2024-01-05

/

返回文章
返回
Baidu
map