搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的单次散射相函数解析表达式

程晨 史泽林 崔生成 徐青山

引用本文:
Citation:

改进的单次散射相函数解析表达式

程晨, 史泽林, 崔生成, 徐青山

Modified analytic expression for the single-scattering phase function

Shi Ze-Lin, Cui Sheng-Cheng, Xu Qing-Shan,
PDF
导出引用
  • 单次散射相函数对电磁辐射传输模拟过程的准确性和计算效率有重要的影响.基于电磁散射与辐射传输中的基本理论,对单次散射相函数的解析表达式进行了研究,提出了一种新的单次散射相函数解析表达式.比较了单个粒子的Henyey-Greenstein相函数、Henyey-Greenstein*相函数与新的相函数随角度的分布,发现新的散射相函数提高了后向散射峰值,可以更合理地描述单个粒子的散射特性.按三种气溶胶粒子谱分布模式计算了Henyey-Greenstein*相函数和新的相函数对应的数值结果,并与多分散系Mie散射相函数进行对比,发现新的相函数提高了与多分散系Mie散射相函数的符合程度.研究表明,对于大角度(大于90)后向散射,新的相函数与Mie散射相函数均方根差较小的占73.3%,高于Henyey-Greenstein*相函数的26.7%,证明了新的相函数可以显著提高后向散射峰值.新的相函数对准确模拟辐射传输过程具有重要意义.
    In electromagnetic radiative transfer calculation, the accuracy and the computation time are usually determined by the representation of single-scattering phase function. Accurate calculation is time consuming even for spherical particle, thus, an analytic representation is commonly adopted to approximate the exact phase function and then accelerate the calculation. Most widely used single-scattering phase functions are the Henyey-Greenstein phase function and modified Henyey-Greenstein phase function (Henyey-Greenstein*). Although the Henyey-Greenstein phase function and the Henyey-Greenstein* phase function can represent the forward-scattering peak of Mie-scattering phase function well, they fail to reproduce the backscattering behavior, limiting the accuracy of the calculation. In order to better fit exact calculations and simulate the backward-scattering peak, we develop a new analytic expression based on the fundamental theory of electromagnetic scattering and radiation transmission. This phase function is an algebraic expression with one single free parameter (asymmetry factor), and can be expanded into Legendre polynomials. The new phase function converges to the Rayleigh phase function when the asymmetry factor approximates to 0, and it can approach to the Henyey-Greenstein phase function as the asymmetry factor is about 1. We compare the Henyey-Greenstein phase function, the Henyey-Greenstein* phase function, and the new phase function for different asymmetry factors, and find that the new phase function provides a more realistic description for the unpolarized light scattering from small particles. Furthermore, the calculated value for the ratio of the scattering intensity at 90 degree to that in the backward direction is more reasonable. We also investigate the effectiveness by approximating the scattering from polydispersed particles through comparing the new phase function, the Henyey-Greenstein* phase function, and the Mie-scattering phase function for three types of Derimendjian's polydispersions. Results show that the new phase function fits the Mie-scattering phase function much better than the Henyey-Greenstein* phase function. For the new phase function, the root-mean-square error is small for 73.3% data. By contrast, only 26.7% data fit the Mie-scattering phase function well for the Henyey-Greenstein* phase function. Similarly, the effectiveness of new function is most significant when calculating the ratio of the scattering intensity at 90 degree to that in the backward direction. In summary, the new Henyey-Greenstein* phase function provides a more accurate calculation for the scattering intensity in the backward direction, and is conducive to electromagnetic radiative transfer calculation. Furthermore, because the proposed phase function has the same basic form as the Heny-Greenstein phase function, reformatting radiative transfer model in terms of the new phase function should require relatively little effort.
      通信作者: 徐青山, qshxu@aiofm.ac.cn
    • 基金项目: 气象专项课题(批准号:GYHY201106002-03)和国家自然科学基金(批准号:41576185)资助的课题.
      Corresponding author: , qshxu@aiofm.ac.cn
    • Funds: Project supported by the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201106002-03) and the National Natural Science Foundation of China (Grant No. 41576185).
    [1]

    Si F Q, Liu J G, Xie P H, Zhang Y J, Dou K, Liu W Q 2006 Acta Phys. Sin. 55 3165(in Chinese)[司福祺, 刘建国, 谢品华, 张玉钧, 窦科, 刘文清2006 55 3165]

    [2]

    Xie Z L, Zhang R, Xiu X Q, Han P, Liu B, Chen L, Yu H Q, Jiang R L, Shi Y, Zhang Y D 2007 Acta Phys. Sin. 56 6717(in Chinese)[谢自力, 张荣, 修向前, 韩平, 刘斌, 陈琳, 俞慧强, 江若链, 施毅, 郑有炓2007 56 6717]

    [3]

    Li Y, Song J, Zhang Z M 2003 Chin. Phys. Lett. 20 1189

    [4]

    Li J N, Barker H, Yang P, Yi B Q 2015 J. Geophys. Res. 120 128

    [5]

    Liu K, Zhang F, Wu K, Zhou X J, Zhang H, Liu R Q 2016 Acta Meteorol. Sin. 74 784(in Chinese)[刘琨, 张峰, 吴琨, 周秀骥, 张华, 刘仁强2016气象学报 74 784]

    [6]

    Toublance D 1996 Appl. Opt. 35 3270

    [7]

    Chen X H, Liu Q, Wei H L 2007 J. Light Scatt. 3 283(in Chinese)[陈秀红, 刘强, 魏合理2007光散射学报 3 283]

    [8]

    Ding S, Xie Y, Yang P, Weng F, Liu Q, Baum B, Hu Y 2009 J. Quant. Spectrosc. Radiat. Transfer 110 1190

    [9]

    Cai H, Huang N N 2003 Chin. Phys. Lett. 20 496

    [10]

    Xu L Q, Li H, Xiao Z Y 2008 Acta Phys. Sin. 57 6030(in Chinese)[徐兰青, 李晖, 肖郑颖2008 57 6030]

    [11]

    Liou K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation (2nd Ed.) (Beijing:China Meteorogical Press) pp108-109(in Chinese)[廖国男著(郭彩丽, 周诗健译) 2004大气辐射导论(第二版) (北京:气象出版社)第108–109页]

    [12]

    Joseph J, Wiscombe W, Weinman J 1976 J. Atmos. Sci. 33 2452

    [13]

    Wiscombe W 1977 J. Atmos. Sci. 34 1408

    [14]

    Huang C J, Liu Y F, Wu Z S, Sun Y Q, Long S M 2009 Acta Phys Sin. 58 2397(in Chinese)[黄朝军, 刘亚峰, 吴振森, 孙彦清, 龙姝明2009 58 2397]

    [15]

    Kattawar G W 1975 Quant. Spectrosc. Radiat. Transfer 15 839

    [16]

    Cornette W M, Shanks J G 1992 Appl. Opt. 31 3152

    [17]

    Bohre C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York:John Wiley) p100

    [18]

    McCartney E J 1988 Optics of the Atmosphere (Beijing:Science Press) p276(in Chinese)[麦克特尼E J著(潘乃先译) 1988大气光学(北京:科学出版社)第276页]

    [19]

    Bai L, Tang S Q, Wu Z S, Xie P H, Wang S M 2010 Acta Phys. Sin. 59 1749(in Chinese)[白璐, 汤双庆, 吴振森, 谢品华, 汪世美2010 59 1749]

    [20]

    Zhu M Z, Zhang H L, Jia H L, Yang J K, Cheng S L 2007 J. Light Scatt. 3 225(in Chinese)[朱孟真, 张海良, 贾红辉, 杨建坤, 常胜利2007光散射学报 3 225]

    [21]

    Derimendjian D 1963 Scattering and Polarization Properties of Polydispersed Suspensions with Partial Absorption (New York:The MacMillan Company, Pursuant to a Special Arrangement with Pergamon Press) pp4-9

    [22]

    Diermendjian D 1969 Electromagnetic Scattering on Spherical Polydispersions (New York:American Elsevier) pp31-78

  • [1]

    Si F Q, Liu J G, Xie P H, Zhang Y J, Dou K, Liu W Q 2006 Acta Phys. Sin. 55 3165(in Chinese)[司福祺, 刘建国, 谢品华, 张玉钧, 窦科, 刘文清2006 55 3165]

    [2]

    Xie Z L, Zhang R, Xiu X Q, Han P, Liu B, Chen L, Yu H Q, Jiang R L, Shi Y, Zhang Y D 2007 Acta Phys. Sin. 56 6717(in Chinese)[谢自力, 张荣, 修向前, 韩平, 刘斌, 陈琳, 俞慧强, 江若链, 施毅, 郑有炓2007 56 6717]

    [3]

    Li Y, Song J, Zhang Z M 2003 Chin. Phys. Lett. 20 1189

    [4]

    Li J N, Barker H, Yang P, Yi B Q 2015 J. Geophys. Res. 120 128

    [5]

    Liu K, Zhang F, Wu K, Zhou X J, Zhang H, Liu R Q 2016 Acta Meteorol. Sin. 74 784(in Chinese)[刘琨, 张峰, 吴琨, 周秀骥, 张华, 刘仁强2016气象学报 74 784]

    [6]

    Toublance D 1996 Appl. Opt. 35 3270

    [7]

    Chen X H, Liu Q, Wei H L 2007 J. Light Scatt. 3 283(in Chinese)[陈秀红, 刘强, 魏合理2007光散射学报 3 283]

    [8]

    Ding S, Xie Y, Yang P, Weng F, Liu Q, Baum B, Hu Y 2009 J. Quant. Spectrosc. Radiat. Transfer 110 1190

    [9]

    Cai H, Huang N N 2003 Chin. Phys. Lett. 20 496

    [10]

    Xu L Q, Li H, Xiao Z Y 2008 Acta Phys. Sin. 57 6030(in Chinese)[徐兰青, 李晖, 肖郑颖2008 57 6030]

    [11]

    Liou K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation (2nd Ed.) (Beijing:China Meteorogical Press) pp108-109(in Chinese)[廖国男著(郭彩丽, 周诗健译) 2004大气辐射导论(第二版) (北京:气象出版社)第108–109页]

    [12]

    Joseph J, Wiscombe W, Weinman J 1976 J. Atmos. Sci. 33 2452

    [13]

    Wiscombe W 1977 J. Atmos. Sci. 34 1408

    [14]

    Huang C J, Liu Y F, Wu Z S, Sun Y Q, Long S M 2009 Acta Phys Sin. 58 2397(in Chinese)[黄朝军, 刘亚峰, 吴振森, 孙彦清, 龙姝明2009 58 2397]

    [15]

    Kattawar G W 1975 Quant. Spectrosc. Radiat. Transfer 15 839

    [16]

    Cornette W M, Shanks J G 1992 Appl. Opt. 31 3152

    [17]

    Bohre C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York:John Wiley) p100

    [18]

    McCartney E J 1988 Optics of the Atmosphere (Beijing:Science Press) p276(in Chinese)[麦克特尼E J著(潘乃先译) 1988大气光学(北京:科学出版社)第276页]

    [19]

    Bai L, Tang S Q, Wu Z S, Xie P H, Wang S M 2010 Acta Phys. Sin. 59 1749(in Chinese)[白璐, 汤双庆, 吴振森, 谢品华, 汪世美2010 59 1749]

    [20]

    Zhu M Z, Zhang H L, Jia H L, Yang J K, Cheng S L 2007 J. Light Scatt. 3 225(in Chinese)[朱孟真, 张海良, 贾红辉, 杨建坤, 常胜利2007光散射学报 3 225]

    [21]

    Derimendjian D 1963 Scattering and Polarization Properties of Polydispersed Suspensions with Partial Absorption (New York:The MacMillan Company, Pursuant to a Special Arrangement with Pergamon Press) pp4-9

    [22]

    Diermendjian D 1969 Electromagnetic Scattering on Spherical Polydispersions (New York:American Elsevier) pp31-78

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术.  , 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型.  , 2022, 71(11): 115201. doi: 10.7498/aps.70.20212269
    [3] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型及散射调制现象的特征.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212269
    [4] 李顺, 李正军, 屈檀, 李海英, 吴振森. 双零阶贝塞尔波束的传播及对单轴各向异性球的散射特性.  , 2022, 71(18): 180301. doi: 10.7498/aps.71.20220491
    [5] 付成花. 微纳粒子光学散射分析.  , 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [6] 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场.  , 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [7] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像.  , 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [8] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型.  , 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [9] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性.  , 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [10] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟.  , 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [11] 赵太飞, 柯熙政. Monte Carlo方法模拟非直视紫外光散射覆盖范围.  , 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [12] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法.  , 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [13] 刘文军, 毛宏燕, 付国庆, 曲士良. 散射介质中多重散射太赫兹脉冲的时域统计特性.  , 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [14] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射.  , 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [15] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究.  , 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [16] 王清华, 张颖颖, 来建成, 李振华, 贺安之. Mie理论在生物组织散射特性分析中的应用.  , 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [17] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响.  , 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [18] 白 璐, 吴振森, 陈 辉, 郭立新. 高斯波束入射下串粒子的散射问题.  , 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [19] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆.  , 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
    [20] 李飞飞, 许京军, 刘思敏, 乔海军, 张光寅. c向切割LiNbO3∶Fe晶体中光折变光散射.  , 2001, 50(12): 2341-2344. doi: 10.7498/aps.50.2341
计量
  • 文章访问数:  7430
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-06
  • 修回日期:  2017-05-11
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map