搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷云电场作用下长地线表面正极性辉光电晕放电的仿真研究

司马文霞 范硕超 杨庆 王琦

引用本文:
Citation:

雷云电场作用下长地线表面正极性辉光电晕放电的仿真研究

司马文霞, 范硕超, 杨庆, 王琦

Numerical simulation of positive glow corona discharge initiated from long ground wire under thundercloud field

Sima Wen-Xia, Fan Shuo-Chao, Yang Qing, Wang Qi
PDF
导出引用
  • 在雷云电场的缓慢作用下, 一种无流注的正极性辉光电晕在接地物体表面起始, 向周围空间注入大量正极性空间电荷, 从而改变雷电先导对雷击目的物的选择. 本文对雷云电场作用下起始于长地线表面的正极性辉光电晕放电进行了仿真研究; 考虑了正极性离子与其他离子的附着与碰撞作用, 建立了一种精确的二维正极性辉光电晕模型; 并通过在实验室内开展高压电晕放电试验, 测量了不同背景电场下的电晕电流; 与本文所建模型的仿真结果进行对比, 对模型的正确性进行了验证. 基于上述模型, 对正极性辉光电晕在雷云感应作用下的起始发展过程与电晕特性进行了仿真模拟, 得到了该电晕的电晕电流、正离子密度分布规律以及正离子迁移规律. 发现在雷云电场作用下, 电晕放电产生的正离子在迁移初期于垂直于地线的平面内基本呈圆对称状均匀分布, 但随着离子逐渐远离地线其分布不再均匀, 呈拉长的椭圆形分布, 多数离子最终分布于地线上方区域并逐渐向雷云方向迁移; 由于正离子在地线上方迁移区聚集形成的正空间电荷背景对行进电子束具有衰减和消耗作用, 抑制了电子崩的形成, 并降低了电子崩转化为流注的概率, 阻止了新的电子崩对流注的不断注入, 同时正空间电荷背景使气体的碰撞面增大, 增加了与电子的复合概率, 引起大量电子的消耗, 最终抑制了电子崩的形成与流注的发展, 地线表面的上行先导得到抑制.
    With the slow effect of electric field of thundercloud, a kind of positive glow corona without streamers is initiated from the surface of object near the ground, and a large number of positive space charges are injected into the surrounding space, consequently, lighting targets selected by the lighting leader can be changed. In this paper, a numerical simulation of positive glow corona discharge initiated from the long ground wire with the effect of the electric field of thundercloud is presented. In consideration of the attachment and collision effects between positive ions and other ions, an accurate two-dimensional positive glow corona model is established. Meanwhile, a high-voltage corona discharge experiment is done in the laboratory to measure the corona current in different background electric fields, and the results are compared with the simulation results in order to verify the correctness of the model established in this paper. According to the established model, the initiation and development progress of glow corona with the effect of thundercloud are simulated and the corona current, laws of positive ion density distribution and migration are revealed. Results show that positive ions generated from the glow corona discharge present a circular symmetric distribution in the plane perpendicular to the ground wire at their early stage of migration, but the distribution is shaped as an elongated oval later when the ions move farther from the ground wire for the effect of electric field of thundercloud, that is to say, the overwhelming majority of the ions will be finally distributed in the upper area of the ground wire and gradually migrate towards the thundercloud. Due to the accumulation effects of positive ions in the upper migration area near the ground wire, the positive space charge background is formed, which has a damping effect on the electron beam. Thus the formation of electron avalanche is suppressed and the probability for electron avalanche to be converted into streamer is reduced. Meanwhile, the positive space charge background improves the collision surface of the gas and increases the compound probability between positive ions and electrons. Therefore, the conversion processes from electron avalanche and streamer to upward leader are impeded and the initiation of upward leader is suppressed.
    • 基金项目: 国家自然科学基金(批准号: 51177182)和国家创新研究群体基金(批准号: 51321063)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51177182) and the Innovative Research Groups of China (Grant No. 51321063).
    [1]

    Chauzy S, Raizonville P 1982 J. Geophys. Res. 87 3143

    [2]

    Liu X X, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [3]

    Li X C, Bao W T, Jia P Y, Zhao H H, Di C, Chen J Y 2014 Chin. Phys. B 23 095202

    [4]

    Rakov V, Uman M A 2007 Lightning: Physics and Effects (1st Ed.) (Cambridge: Cambridge University Press) pp1-20

    [5]

    Waters R T, Stark W B 1975 J. Phys. D: Appl. Phys. 8 416

    [6]

    Uhlig C A E 1956 Proceedings of High Voltage Symposium on National Research Council of Canada Ottawa, Canada, 1956 pp15.1-15.13

    [7]

    Bazelyan E M, Raizer Y P 2000 Phys.-Usp. 43 701

    [8]

    Aleksandrov N L, Bazelyan E M, Carpenter R B J, Drabkin M M, Raizer Y P 2001 J. Phys. D: Appl. Phys. 34 3256

    [9]

    Aleksandrov N L, Bazelyan E M, Drabkin M M, Carpenter R B, Raizer Y P 2002 Plasma Phys. Rep. 28 953

    [10]

    Aleksandrov N L, Bazelyan E M, D’Alessandro F, Raizer Y P 2005 J. Phys. D: Appl. Phys. 38 1225

    [11]

    Bazelyan E M, Raizer Y P, Aleksandrov N L 2008 Plasma Sources Sci. Technol. 17 024015

    [12]

    Bazelyan E M, Raizer Y P, Aleksandrov N L, D’Alessandro F 2009 Atmos. Res. 94 436

    [13]

    Rizk F A M 2008 US Patent 7 468 879

    [14]

    Rizk F A M 2011 IEEE Trans. Power Deliv. 26 1156

    [15]

    Becerra M 2013 J. Phys. D: Appl. Phys. 46 135205

    [16]

    Becerra M, Cooray V 2006 J. Phys. D: Appl. Phys. 39 3708

    [17]

    Becerra M, Cooray V 2006 J. Phys. D: Appl. Phys. 39 4695

    [18]

    Gopalakrishnan V, Pawar S D, Murugavel P, Johare K P 2011 J. Atmos. Sol.-Terr. Phys. 73 1876

    [19]

    Soula S, Chauzy S 1991 J. Geophys. Res. 96 22327

    [20]

    Peek F W 1929 Dielectric Phenomena in High-Voltage Engineering (3rd Ed.) (New York: McGraw-Hill) pp48-108

    [21]

    Wesselingh J A, Krishna R 2000 Mass Transfer in Multicomponent Mixtures (1st Ed.) (The Netherlands: Delft University Press) pp95-103

    [22]

    Guo S H 2008 Electrodynamics (Beijing: Higher Education Press) (3rd Ed.) pp37-63 (in Chinese) [郭硕鸿 2008 电动力学 (第三版) (北京: 高等教育出版社) 第37-63页]

    [23]

    Qie X, Soula S, Chauzy S 1994 Ann. Geopysicae 12 1218

    [24]

    Cobine J D 1970 Gaseous Conductors: Theory and Engineering Applications (2nd Ed.) (New York: McGraw-Hill) pp259-280

    [25]

    Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201 (in Chinese) [廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 61 245201]

    [26]

    Liu X X, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Jpn. J. Appl. Phys. 51 026001

    [27]

    Wu F F 2014 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [伍飞飞 2014 博士学位论文 (重庆: 重庆大学)]

    [28]

    He W, Liu X X, Xian R C, Chen S H, Liao R J, Yang F, Xiao H G 2013 Plasma Sci. Technol. 15 335

    [29]

    Aleksandrov N L, Bazelyan E M, Raizer Y P 2005 Plasma Phys. Rep. 31 75

  • [1]

    Chauzy S, Raizonville P 1982 J. Geophys. Res. 87 3143

    [2]

    Liu X X, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [3]

    Li X C, Bao W T, Jia P Y, Zhao H H, Di C, Chen J Y 2014 Chin. Phys. B 23 095202

    [4]

    Rakov V, Uman M A 2007 Lightning: Physics and Effects (1st Ed.) (Cambridge: Cambridge University Press) pp1-20

    [5]

    Waters R T, Stark W B 1975 J. Phys. D: Appl. Phys. 8 416

    [6]

    Uhlig C A E 1956 Proceedings of High Voltage Symposium on National Research Council of Canada Ottawa, Canada, 1956 pp15.1-15.13

    [7]

    Bazelyan E M, Raizer Y P 2000 Phys.-Usp. 43 701

    [8]

    Aleksandrov N L, Bazelyan E M, Carpenter R B J, Drabkin M M, Raizer Y P 2001 J. Phys. D: Appl. Phys. 34 3256

    [9]

    Aleksandrov N L, Bazelyan E M, Drabkin M M, Carpenter R B, Raizer Y P 2002 Plasma Phys. Rep. 28 953

    [10]

    Aleksandrov N L, Bazelyan E M, D’Alessandro F, Raizer Y P 2005 J. Phys. D: Appl. Phys. 38 1225

    [11]

    Bazelyan E M, Raizer Y P, Aleksandrov N L 2008 Plasma Sources Sci. Technol. 17 024015

    [12]

    Bazelyan E M, Raizer Y P, Aleksandrov N L, D’Alessandro F 2009 Atmos. Res. 94 436

    [13]

    Rizk F A M 2008 US Patent 7 468 879

    [14]

    Rizk F A M 2011 IEEE Trans. Power Deliv. 26 1156

    [15]

    Becerra M 2013 J. Phys. D: Appl. Phys. 46 135205

    [16]

    Becerra M, Cooray V 2006 J. Phys. D: Appl. Phys. 39 3708

    [17]

    Becerra M, Cooray V 2006 J. Phys. D: Appl. Phys. 39 4695

    [18]

    Gopalakrishnan V, Pawar S D, Murugavel P, Johare K P 2011 J. Atmos. Sol.-Terr. Phys. 73 1876

    [19]

    Soula S, Chauzy S 1991 J. Geophys. Res. 96 22327

    [20]

    Peek F W 1929 Dielectric Phenomena in High-Voltage Engineering (3rd Ed.) (New York: McGraw-Hill) pp48-108

    [21]

    Wesselingh J A, Krishna R 2000 Mass Transfer in Multicomponent Mixtures (1st Ed.) (The Netherlands: Delft University Press) pp95-103

    [22]

    Guo S H 2008 Electrodynamics (Beijing: Higher Education Press) (3rd Ed.) pp37-63 (in Chinese) [郭硕鸿 2008 电动力学 (第三版) (北京: 高等教育出版社) 第37-63页]

    [23]

    Qie X, Soula S, Chauzy S 1994 Ann. Geopysicae 12 1218

    [24]

    Cobine J D 1970 Gaseous Conductors: Theory and Engineering Applications (2nd Ed.) (New York: McGraw-Hill) pp259-280

    [25]

    Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201 (in Chinese) [廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 61 245201]

    [26]

    Liu X X, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Jpn. J. Appl. Phys. 51 026001

    [27]

    Wu F F 2014 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [伍飞飞 2014 博士学位论文 (重庆: 重庆大学)]

    [28]

    He W, Liu X X, Xian R C, Chen S H, Liao R J, Yang F, Xiao H G 2013 Plasma Sci. Technol. 15 335

    [29]

    Aleksandrov N L, Bazelyan E M, Raizer Y P 2005 Plasma Phys. Rep. 31 75

  • [1] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究.  , 2024, 73(1): 015101. doi: 10.7498/aps.73.20230712
    [2] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜.  , 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [3] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器.  , 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [4] 柴钰, 张妮, 刘杰, 殷宁, 刘树林, 张晶园. 微尺度下N2–O2电晕放电的动态特性二维仿真.  , 2020, 69(16): 165202. doi: 10.7498/aps.69.20200095
    [5] 张增星, 李东. 基于双极性二维晶体的新型p-n结.  , 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
    [6] 茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡. 直流电晕充电下环氧树脂表面电位衰减特性的研究.  , 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [7] 王维, 杨兰均, 刘帅, 黄易之, 黄东, 吴锴. 线-铝箔电极电晕放电激励器的推力理论与实验研究.  , 2015, 64(10): 105204. doi: 10.7498/aps.64.105204
    [8] 王现彬, 赵正平, 冯志红. N极性GaN/AlGaN异质结二维电子气模拟.  , 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [9] 伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析.  , 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [10] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟.  , 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [11] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究.  , 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [12] 计时鸣, 翁晓星, 谭大鹏. 基于水平集方法二维模型的软性磨粒两相流流场特性分析方法.  , 2012, 61(1): 010205. doi: 10.7498/aps.61.010205
    [13] 袁桂芳, 韩利红, 俞重远, 刘玉敏, 芦鹏飞. 二维光子晶体禁带特性研究.  , 2011, 60(10): 104214. doi: 10.7498/aps.60.104214
    [14] 齐 冰, 任春生, 马腾才, 王友年, 王德真. 多针电晕增强大气压辉光放电稳定性研究.  , 2006, 55(1): 331-336. doi: 10.7498/aps.55.331
    [15] 陈钢进, 肖慧明, 夏钟福. 电晕充电多孔PTFE/PP复合驻极体过滤材料的电荷存储特性.  , 2006, 55(5): 2464-2469. doi: 10.7498/aps.55.2464
    [16] 韩守振, 田 洁, 冯 帅, 任 承, 李志远, 程丙英, 张道中. 二维平板光子晶体直波导的制备和光传输特性的测量.  , 2005, 54(12): 5659-5662. doi: 10.7498/aps.54.5659
    [17] 冀忠宝, 夏钟福, 沈莉莉, 安振连. 电晕充电的聚丙烯无纺布空气过滤膜的电荷储存及稳定性.  , 2005, 54(8): 3799-3804. doi: 10.7498/aps.54.3799
    [18] 霍崇儒, 朱振和, 葛培文, 陈冬. 微重力下溶液法晶体生长模型中晶体生长界面稳定性的研究.  , 2001, 50(3): 377-382. doi: 10.7498/aps.50.377
    [19] 屈少华, 姚凯伦, 郁伯铭. 二维次近邻渗流模型.  , 1991, 40(2): 169-174. doi: 10.7498/aps.40.169
    [20] 夏钟福, 王毓德, 丁亥, 杨国茂, 时东兵, 孙熙民. 聚酯的高温电晕充电和电荷在体内的输运.  , 1991, 40(12): 1986-1991. doi: 10.7498/aps.40.1986
计量
  • 文章访问数:  5979
  • PDF下载量:  904
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2014-12-15
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map