搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2纳米粉在水中通过摩擦还原CO2

李鹏程 唐重阳 程亮 胡永明 肖湘衡 陈万平

引用本文:
Citation:

TiO2纳米粉在水中通过摩擦还原CO2

李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平

Reduction of CO2 by TiO2 nanoparticles through friction in water

Li Peng-Cheng, Tang Chong-Yang, Cheng Liang, Hu Yong-Ming, Xiao Xiang-Heng, Chen Wan-Ping
PDF
HTML
导出引用
  • 纳米材料与特氟龙磁力搅拌棒之间的摩擦被发现可导致磁力搅拌条件下的染料降解. 本文对磁力搅拌条件下TiO2纳米粉还原CO2进行了研究. 在充有CO2的100 mL石英反应器中, 在50 mL的水中分散1.00 g TiO2纳米粉, 经过50 h磁力搅拌可产生6.65 × 10–6 (体积分数, 下同) CO, 2.39 × 10–6 CH4和0.69 × 10–6 H2; 而如果没有TiO2纳米粉, 则只能产生2.22 × 10–6 CO和0.98 × 10–6 CH4. 对含有分散TiO2纳米粉的水同时采用4个磁力搅拌棒, 50 h磁力搅拌产生的气体进一步提高到19.94 × 10–6 CO, 2.33 × 10–6 CH4和2.06 × 10–6 H2. 基于TiO2纳米粉通过摩擦吸收机械能并被激发产生电子-空穴对, 建立了TiO2纳米粉对CO2和水还原的催化机理. 本发现表明, 纳米材料能够通过摩擦利用机械能进行CO2的还原, 从而为开发利用环境中的机械能提供了一个新的方向.
    The friction between some nanomaterials and teflon magnetic stirring rods has recently been found responsible for dye degradation by magnetic stirring in dark. In this work, a study is conducted on the reduction of CO2 by TiO2 nanoparticles under magnetic stirring in water. In a 100-mL reactor filled with 50-mL water, 1.00-g TiO2 nanoparticles and 1-atm CO2, 50-h magnetic stirring results in the formation of 6.65 × 10–6 (volume fraction) CO, 2.39 × 10–6 CH4 and 0.69 × 10–6 H2; while in a reactor without TiO2 nanoparticles, the same magnetic stirring leads only 2.22 × 10–6 CO and 0.98 × 10–6 CH4 to form. Four magnetic stirring rods are used simultaneously to further enhance the stirring, and 50-h magnetic stirring can form 19.94 × 10–6 CO, 2.33 × 10–6 CH4, and 2.06 × 10–6 H2. A mechanism for the catalytic role of TiO2 nanoparticles in the reduction of CO2 and H2O is established, which is based on the excitation of electron-hole pairs in TiO2 by mechanical energy absorbed through friction. This finding clearly demonstrates that nanostructured semiconductors are able to utilize mechanical energy obtained through friction to reduce CO2, thus providing a new direction for developing and utilizing the mechanical energy harvested from ambient environment.
      通信作者: 陈万平, wpchen@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U2067207)和国家重点研发计划(批准号: 2020YFB2008800)资助的课题
      Corresponding author: Chen Wan-Ping, wpchen@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U2067207) and the National Key R&D Program of China (Grant No. 2020YFB2008800).
    [1]

    李冬冬, 王丽莉 2012 61 034212Google Scholar

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212Google Scholar

    [2]

    李平, 李海金, 涂文广, 周勇, 邹志刚 2015 64 094209Google Scholar

    Li P, Li H J, Tu W G, Zhou Y, Zou Z G 2015 Acta Phys. Sin. 64 094209Google Scholar

    [3]

    吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟 2017 66 167702Google Scholar

    Wu H P, Ling H, Zhang Z, Li Y B, Liang L H, Chai G Z 2017 Acta Phys. Sin. 66 167702Google Scholar

    [4]

    赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 62 158104Google Scholar

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104Google Scholar

    [5]

    崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明 2020 69 127706Google Scholar

    Cui Z Y, Xie Z S, Wang Y J, Yuan G L, Liu J M 2020 Acta Phys. Sin. 69 127706Google Scholar

    [6]

    Ran J, Jaroniec M, Qiao S Z 2018 Adv. Mater. 30 1704649Google Scholar

    [7]

    Kreft S, Wei D, Junge H, Beller M 2020 Energy Chem. 2 100044Google Scholar

    [8]

    Wang X, Li Z, Yang X 2015 J. Mol. Sci. 31 190201

    [9]

    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 68 190201Google Scholar

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201Google Scholar

    [10]

    韩杰敏, 王梅, 仝召民, 马一飞 2019 无机材料学报 34 839Google Scholar

    Han J M, Wang M, Tong Z M, Ma Y F 2019 J. Inorg. Mater. 34 839Google Scholar

    [11]

    程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Pesika N S, 张忠强, 郭立强, 王莹 2016 65 060201Google Scholar

    Cheng G G, Zhang W, Fang J, Jiang S Y, Ding J N, Pesika N S, Zhang Z Q, Guo L Q, Wang Y 2016 Acta Phys. Sin. 65 060201Google Scholar

    [12]

    秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振 2011 60 107307Google Scholar

    Qin J M, Tian L F, Zhao D X, Jiang D Y, Cao J M, Ding M, Guo Z 2011 Acta Phys. Sin. 60 107307Google Scholar

    [13]

    Deng J N, Kuang X, Liu R Y, Ding W B, Wang A C, Lai Y C, Dong K, Wen Z, Wang Y X, Wang L L, Qi H J, Zhang T, Wang Z L 2018 Adv. Mater. 30 1705918Google Scholar

    [14]

    Wu J M, Chang W E, Chang Y T, Chang C K 2016 Adv. Mater. 28 3718Google Scholar

    [15]

    Liang Z, Yan C F, Rtimi S, Bandara J 2019 Appl. Catal. B-Environ 241 256Google Scholar

    [16]

    洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 67 107702Google Scholar

    Hong Y T, Ma J P, Wu Z, Ying J S, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar

    [17]

    徐姝雅, 刘治宏, 张淮, 于金冉 2019 化学学报 77 427

    Xu S Y, Liu Z H, Zhang H, Yu J R 2019 Acta Phys. Sin. 77 427

    [18]

    Starr M B, Shi J, Wang X D 2012 Angew. Chem. Int. Ed. 51 5962Google Scholar

    [19]

    You H, Wu Z, Zhang L, Ying Y, Liu Y, Fei L, Chen X, Jia Y, Wang Y, Wang F, Ju S, Qiao J, Lam C H, Huang H 2019 Angew. Chem. 58 11779Google Scholar

    [20]

    Feng W, Yuan J, Zhang L, Hu W, Wu Z, Wang X, Huang X, Liu P, Zhang S 2020 Appl. Catal. B-Environ 277 119250Google Scholar

    [21]

    Su R, Hsain H A, Wu M, Zhang D, Hu X, Wang Z, Wang X, Li F T, Chen X, Zhu L, Yang Y, Yang Y, Lou X, Pennycook S J 2019 Angew. Chem. 131 15220Google Scholar

    [22]

    Yein W T, Wang Q, Liu Y, Li Y, Jian J H, Wu X H 2020 J. Environ. Chem. Eng. 8 103626Google Scholar

    [23]

    Kang Z H, Qin N, Lin E Z, Wu J, Yuan B W, Bao D H 2020 J. Cleaner Prod. 261 121125Google Scholar

    [24]

    Hao A, Ning X, Cao Y, Xie J, Jia D 2020 Mater. Chem. Front. 4 2096Google Scholar

    [25]

    Wei Y, Zhang Y, Geng W, Su H, Long M 2019 Appl. Catal. B-Environ 259 118084Google Scholar

    [26]

    Ismail M, Wu Z, Zhang L, Ma J, Jia Y, Hu Y, Wang Y 2019 Chemosphere 228 212Google Scholar

    [27]

    Lin J H, Tsao Y H, Wu M H, Chou T M, Lin Z H, Wu J M 2017 Nano Energy 31 575Google Scholar

    [28]

    Feng Y, Ling L, Wang Y, Xu Z, Cao F, Li H, Bian Z 2017 Nano Energy 40 481Google Scholar

    [29]

    Zhu R, Xu Y, Bai Q, Wang Z, Guo X, Kimura H 2018 Chem. Phys. Lett. 702 26Google Scholar

    [30]

    Nie Q, Xie Y, Ma J, Wang J, Zhang G 2020 J. Cleaner Prod. 242 118532Google Scholar

    [31]

    Liu D, Song Y, Xin Z, Liu G, Jin C, Shan F 2019 Nano Energy 65 104024Google Scholar

    [32]

    Li P, Wu J, Wu Z, Jia Y, Ma J, Chen W, Zhang L, Yang J, Liu Y 2019 Nano Energy 63 103832Google Scholar

    [33]

    Lei H, Wu M, Mo F, Ji S, Dong X, Wu Z, Gao J, Yang Y, Jia Y 2020 Nano Energy 78 105290Google Scholar

    [34]

    Zhao J, Chen L, Luo W, Li H, Wu Z, Xu Z, Zhang Y, Zhang H, Yuan G, Gao J, Jia Y 2020 Ceram. Int. 46 25293Google Scholar

    [35]

    Yang B, Chen H, Guo X, Wang L, Xu T, Bian J, Yang Y, Liu Q, Du Y, Lou X 2020 J. Mater. Chem. C 8 14845Google Scholar

    [36]

    Wu M, Lei H, Chen J, Dong X 2020 J. Colloid Interface Sci. 587 883

    [37]

    Ishibashi K I, Fujishima A, Watanabe T, Hashimoto K 2000 Electrochem. Commun. 2 207Google Scholar

    [38]

    Baytekin B, Baytekin H T, Grzybowski B A 2012 J. Am. Chem. Soc. 134 7223Google Scholar

    [39]

    Heinicke G, Hennig H P, Linke E, Steinike U, Thiessen K P, Meyer K 1984 Cryst. Res. Technol. 19 1424Google Scholar

    [40]

    Kajdas C, Hiratsuka K 2009 Proc. Inst. Mech. Eng., Part J 223 827Google Scholar

    [41]

    Park J Y, Salmeron M 2014 Chem. Rev. 114 677Google Scholar

    [42]

    Manini N, Mistura G, Paolicelli G, Tosatti E, Vanossi A 2017 Adv. Phys.: X 2 569

    [43]

    Qi Y, Park J Y, Hendriksen B L M, Ogletree D F, Salmeron M 2008 Phys. Rev. B 77 184105Google Scholar

    [44]

    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W 2014 Chem. Rev. 114 9919Google Scholar

    [45]

    Fujishima A, Zhang X, Tryk D 2008 Surf. Sci. Rep. 63 515Google Scholar

    [46]

    Al-Mamoori A, Krishnamurthy A, Rownaghi A A, Rezaei F 2017 Energy Technol. 5 834Google Scholar

  • 图 1  二氧化钛纳米颗粒的SEM照片

    Fig. 1.  An SEM micrograph taken for as-received TiO2 nanoparticles.

    图 2  单个磁力搅拌棒分别搅拌50 h溶解有CO2的水及溶解有CO2并分散有TiO2纳米粉的水所产生的气体产物

    Fig. 2.  Gases produced from water dissolved with CO2 through 50 h magnetic stirring using a PTFE (poly tetra fluoroethylene) magnetic stirring rod. There were no TiO2 nanoparticles in water in the reference test.

    图 3  分别经过50, 100, 150 h磁力搅拌的气体产物, 在磁力搅拌中同时采用4个特氟龙磁力搅拌棒

    Fig. 3.  Gases produced from water dissolved with CO2 through 50, 100 and 150 h, separately, magnetic stirring using four PTFE magnetic stirring rods.

    图 4  生成的气体体积分数与磁力搅拌时间的关系: 对溶解有CO2并分散有TiO2纳米粉的50 mL的水采用4个特氟龙磁力搅拌棒进行搅拌

    Fig. 4.  Stirring time dependence of CO, CH4 and H2 produced from water dissolved with CO2 and dispersed with TiO2 nanoparticles through magnetic stirring using four PTFE magnetic stirring rods.

    图 5  对含有TiO2纳米粉的苯二甲酸钠溶液在室温及黑暗条件下用4个搅拌棒磁力搅拌后的荧光光谱(激发波长为315 nm)

    Fig. 5.  Fluorescence spectra (excitation wavelength: 315 nm) of sodium terephthalate solution containing TiO2 nanoparticles after being magnetically stirred using four stirring rods at room temperature in dark.

    图 6  TiO2纳米颗粒摩擦催化还原CO2和水的示意图

    Fig. 6.  Schematic illustration of the tribocatalytic reduction of CO2 and H2O by TiO2 nanoparticles under magnetic stirring.

    Baidu
  • [1]

    李冬冬, 王丽莉 2012 61 034212Google Scholar

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212Google Scholar

    [2]

    李平, 李海金, 涂文广, 周勇, 邹志刚 2015 64 094209Google Scholar

    Li P, Li H J, Tu W G, Zhou Y, Zou Z G 2015 Acta Phys. Sin. 64 094209Google Scholar

    [3]

    吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟 2017 66 167702Google Scholar

    Wu H P, Ling H, Zhang Z, Li Y B, Liang L H, Chai G Z 2017 Acta Phys. Sin. 66 167702Google Scholar

    [4]

    赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 62 158104Google Scholar

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104Google Scholar

    [5]

    崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明 2020 69 127706Google Scholar

    Cui Z Y, Xie Z S, Wang Y J, Yuan G L, Liu J M 2020 Acta Phys. Sin. 69 127706Google Scholar

    [6]

    Ran J, Jaroniec M, Qiao S Z 2018 Adv. Mater. 30 1704649Google Scholar

    [7]

    Kreft S, Wei D, Junge H, Beller M 2020 Energy Chem. 2 100044Google Scholar

    [8]

    Wang X, Li Z, Yang X 2015 J. Mol. Sci. 31 190201

    [9]

    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 68 190201Google Scholar

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201Google Scholar

    [10]

    韩杰敏, 王梅, 仝召民, 马一飞 2019 无机材料学报 34 839Google Scholar

    Han J M, Wang M, Tong Z M, Ma Y F 2019 J. Inorg. Mater. 34 839Google Scholar

    [11]

    程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Pesika N S, 张忠强, 郭立强, 王莹 2016 65 060201Google Scholar

    Cheng G G, Zhang W, Fang J, Jiang S Y, Ding J N, Pesika N S, Zhang Z Q, Guo L Q, Wang Y 2016 Acta Phys. Sin. 65 060201Google Scholar

    [12]

    秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振 2011 60 107307Google Scholar

    Qin J M, Tian L F, Zhao D X, Jiang D Y, Cao J M, Ding M, Guo Z 2011 Acta Phys. Sin. 60 107307Google Scholar

    [13]

    Deng J N, Kuang X, Liu R Y, Ding W B, Wang A C, Lai Y C, Dong K, Wen Z, Wang Y X, Wang L L, Qi H J, Zhang T, Wang Z L 2018 Adv. Mater. 30 1705918Google Scholar

    [14]

    Wu J M, Chang W E, Chang Y T, Chang C K 2016 Adv. Mater. 28 3718Google Scholar

    [15]

    Liang Z, Yan C F, Rtimi S, Bandara J 2019 Appl. Catal. B-Environ 241 256Google Scholar

    [16]

    洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 67 107702Google Scholar

    Hong Y T, Ma J P, Wu Z, Ying J S, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar

    [17]

    徐姝雅, 刘治宏, 张淮, 于金冉 2019 化学学报 77 427

    Xu S Y, Liu Z H, Zhang H, Yu J R 2019 Acta Phys. Sin. 77 427

    [18]

    Starr M B, Shi J, Wang X D 2012 Angew. Chem. Int. Ed. 51 5962Google Scholar

    [19]

    You H, Wu Z, Zhang L, Ying Y, Liu Y, Fei L, Chen X, Jia Y, Wang Y, Wang F, Ju S, Qiao J, Lam C H, Huang H 2019 Angew. Chem. 58 11779Google Scholar

    [20]

    Feng W, Yuan J, Zhang L, Hu W, Wu Z, Wang X, Huang X, Liu P, Zhang S 2020 Appl. Catal. B-Environ 277 119250Google Scholar

    [21]

    Su R, Hsain H A, Wu M, Zhang D, Hu X, Wang Z, Wang X, Li F T, Chen X, Zhu L, Yang Y, Yang Y, Lou X, Pennycook S J 2019 Angew. Chem. 131 15220Google Scholar

    [22]

    Yein W T, Wang Q, Liu Y, Li Y, Jian J H, Wu X H 2020 J. Environ. Chem. Eng. 8 103626Google Scholar

    [23]

    Kang Z H, Qin N, Lin E Z, Wu J, Yuan B W, Bao D H 2020 J. Cleaner Prod. 261 121125Google Scholar

    [24]

    Hao A, Ning X, Cao Y, Xie J, Jia D 2020 Mater. Chem. Front. 4 2096Google Scholar

    [25]

    Wei Y, Zhang Y, Geng W, Su H, Long M 2019 Appl. Catal. B-Environ 259 118084Google Scholar

    [26]

    Ismail M, Wu Z, Zhang L, Ma J, Jia Y, Hu Y, Wang Y 2019 Chemosphere 228 212Google Scholar

    [27]

    Lin J H, Tsao Y H, Wu M H, Chou T M, Lin Z H, Wu J M 2017 Nano Energy 31 575Google Scholar

    [28]

    Feng Y, Ling L, Wang Y, Xu Z, Cao F, Li H, Bian Z 2017 Nano Energy 40 481Google Scholar

    [29]

    Zhu R, Xu Y, Bai Q, Wang Z, Guo X, Kimura H 2018 Chem. Phys. Lett. 702 26Google Scholar

    [30]

    Nie Q, Xie Y, Ma J, Wang J, Zhang G 2020 J. Cleaner Prod. 242 118532Google Scholar

    [31]

    Liu D, Song Y, Xin Z, Liu G, Jin C, Shan F 2019 Nano Energy 65 104024Google Scholar

    [32]

    Li P, Wu J, Wu Z, Jia Y, Ma J, Chen W, Zhang L, Yang J, Liu Y 2019 Nano Energy 63 103832Google Scholar

    [33]

    Lei H, Wu M, Mo F, Ji S, Dong X, Wu Z, Gao J, Yang Y, Jia Y 2020 Nano Energy 78 105290Google Scholar

    [34]

    Zhao J, Chen L, Luo W, Li H, Wu Z, Xu Z, Zhang Y, Zhang H, Yuan G, Gao J, Jia Y 2020 Ceram. Int. 46 25293Google Scholar

    [35]

    Yang B, Chen H, Guo X, Wang L, Xu T, Bian J, Yang Y, Liu Q, Du Y, Lou X 2020 J. Mater. Chem. C 8 14845Google Scholar

    [36]

    Wu M, Lei H, Chen J, Dong X 2020 J. Colloid Interface Sci. 587 883

    [37]

    Ishibashi K I, Fujishima A, Watanabe T, Hashimoto K 2000 Electrochem. Commun. 2 207Google Scholar

    [38]

    Baytekin B, Baytekin H T, Grzybowski B A 2012 J. Am. Chem. Soc. 134 7223Google Scholar

    [39]

    Heinicke G, Hennig H P, Linke E, Steinike U, Thiessen K P, Meyer K 1984 Cryst. Res. Technol. 19 1424Google Scholar

    [40]

    Kajdas C, Hiratsuka K 2009 Proc. Inst. Mech. Eng., Part J 223 827Google Scholar

    [41]

    Park J Y, Salmeron M 2014 Chem. Rev. 114 677Google Scholar

    [42]

    Manini N, Mistura G, Paolicelli G, Tosatti E, Vanossi A 2017 Adv. Phys.: X 2 569

    [43]

    Qi Y, Park J Y, Hendriksen B L M, Ogletree D F, Salmeron M 2008 Phys. Rev. B 77 184105Google Scholar

    [44]

    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W 2014 Chem. Rev. 114 9919Google Scholar

    [45]

    Fujishima A, Zhang X, Tryk D 2008 Surf. Sci. Rep. 63 515Google Scholar

    [46]

    Al-Mamoori A, Krishnamurthy A, Rownaghi A A, Rezaei F 2017 Energy Technol. 5 834Google Scholar

  • [1] 段浩炀, 杨柯欣, 曹义刚. 不同力程排斥相互作用胶体粒子系统的摩擦特性.  , 2024, 73(15): 156201. doi: 10.7498/aps.73.20231701
    [2] 肖文悦, 董小硕, 买买提热夏提·买买提, 牛娜娜, 李国栋, 朱泽涛, 毕杰昊. Zn2+和TiO2合金化过程中不同成分占比对薄膜结构和光催化性能的影响.  , 2024, 73(18): 183301. doi: 10.7498/aps.73.20240814
    [3] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量.  , 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [4] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [5] 陈康, 沈煜年. 软体机器人用多孔聚合物水凝胶的摩擦接触非线性行为.  , 2021, 70(12): 120201. doi: 10.7498/aps.70.20202134
    [6] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算.  , 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [7] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究.  , 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [8] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟.  , 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [9] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质.  , 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [10] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响.  , 2018, 67(7): 076101. doi: 10.7498/aps.67.20180311
    [11] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟.  , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [12] 贾汝娟, 王苍龙, 杨阳, 苟学强, 陈建敏, 段文山. 二维Frenkel-Kontorova模型中六角对称结构的摩擦现象.  , 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [13] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究.  , 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [14] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟.  , 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [15] 杨阳, 王苍龙, 段文山, 石玉仁, 陈建敏. 基底势函数的无序性对静摩擦力的影响.  , 2012, 61(13): 130501. doi: 10.7498/aps.61.130501
    [16] 龚中良, 黄 平. 界面摩擦过程非连续能量耗散机理研究.  , 2008, 57(4): 2358-2362. doi: 10.7498/aps.57.2358
    [17] 侯兴刚, 刘安东. V+注入锐钛矿TiO2第一性原理研究.  , 2007, 56(8): 4896-4900. doi: 10.7498/aps.56.4896
    [18] 许中明, 黄 平. 摩擦微观能量耗散机理的复合振子模型研究.  , 2006, 55(5): 2427-2432. doi: 10.7498/aps.55.2427
    [19] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究.  , 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
    [20] 宋功保, 刘福生, 彭同江, 梁敬魁, 饶光辉. 金属离子掺杂对TiO2/白云母纳米复合材料中TiO2的颗粒形态及相组成的影响.  , 2002, 51(12): 2793-2797. doi: 10.7498/aps.51.2793
计量
  • 文章访问数:  5193
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-06-01
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回
Baidu
map