-
孤子是自然界中一种基本的非线性波动传递形式, 孤子间的相互作用能够映射出复杂非线性系统的多体动力学过程, 具有重要的基础研究价值. 被动锁模激光器是研究孤子相互作用的理想平台. 光孤子之间的吸引、排斥作用能够形成孤子分子, 而时间拉伸色散傅里叶变换(TS-DFT)技术使得实时探测孤子分子动力学成为可能. 基于TS-DFT技术, 本文实验研究了钛宝石飞秒激光器产生的孤子分子的内部动态, 通过改变抽运功率, 分别观察到了间隔为180 fs的稳定的孤子分子和间隔为105 fs的具有微弱相位振荡的孤子分子, 后者的振动幅度仅为0.05 rad. 实验发现受到环境影响, 稳定态的孤子分子还能够转变为相位滑动状态. 这些间隔为百飞秒量级的光学孤子分子对于研究孤子的近程非线性相互作用具有突出的意义.Soliton is a universal format of nonlinear wave propagation in nature. Soliton can maintain its shape during propagation. This unique property has been widely observed in plasma physics, high energy electromagnetics, hydrodynamics, and nonlinear optics. Soliton interactions can reflect collective dynamic behaviors in complex nonlinear systems, showing significant basic research value. Passive mode-locked laser is an ideal platform for studying soliton interaction. The attraction and repulsion between two optical solitons can form soliton molecules. Their properties have been intensively studied by optical spectral analysis. However, conventional optical spectrum analyzers show low resolution and long average time. Time-stretched dispersive Fourier transformation (TS-DFT) is an emerging-powerful measurement technology, which can map the spectrum of an optical pulse to a temporal waveform under sufficient dispersion. The TS-DFT makes it possible to detect the dynamics of the solitons in real time. Based on TS-DFT, the internal dynamics of the solitons in Ti:sapphire femtosecond laser is studied in experiment. By changing the pump power, the stable soliton molecules with a separation of 180 fs and the weak phase oscillatory soliton molecules with a separation of 105 fs are observed. The amplitude in the weak oscillation state is merely 0.05 rad. We also find that the soliton molecules in stable state can transform into phase sliding state under environmental perturbation. These optical soliton molecules with a binding separation of 100 fs are of great significance for studying the short-range nonlinear interactions of solitons.
[1] Kivshar Y S, Agrawal G P 2003 Optical Solitons: from Fibers to Photonic Crystals (SanDiego: Academic Press) p5
[2] Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar
[3] Melo F, Douady S 1993 Phys. Rev. Lett. 71 3283Google Scholar
[4] Denschlag J 2000 Science 287 97Google Scholar
[5] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G 2010 Nat. Phys. 6 790Google Scholar
[6] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 63 084202Google Scholar
Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202Google Scholar
[7] Shi H S, Song Y J, Wang Q Y, Zhao L M, Hu M L 2018 Opt. Lett. 43 1623Google Scholar
[8] 徐佳, 吴思达, 刘江, 孙若愚, 王璞 2013 中国激光 40 0702003Google Scholar
Xu J, Wu S D, Liu J, Sun R Y, Wang P 2013 Chin. J. Lasers 40 0702003Google Scholar
[9] Pang M, He W, Jiang X, Russell P S J 2016 Nat. Photonics 10 454Google Scholar
[10] 王光斗, 杨光, 刘艳格, 王志 2017 中国激光 44 83
Wang G D, Yang G, Liu Y G, Wang Z 2017 Chin. J. Lasers 44 83
[11] Huang Q, Wang T, Zou C, AlAraimi M, Rozhin A, Mou C 2018 Chin. Opt. Lett. 16 020019Google Scholar
[12] Zhao C, Huang Q, Al Araimi M, Rozhin A, Sergeyev S, Mou C 2019 Chin. Opt. Lett. 17 020012Google Scholar
[13] Hause A, Hartwig H, Böhm M, Mitschke F 2008 Phys. Rev. A 78 63817Google Scholar
[14] Wang Z Q, Nithyanandan K, Coillet A, Tchofo-Dinda P, Grelu P 2019 Nat. Commun. 10 830Google Scholar
[15] 王志, 贺瑞敬, 刘艳格 2019 中国激光 46 13
Wang Z, He R J, Liu Y G 2019 Chin. J. Lasers 46 13
[16] 魏志伟, 刘萌, 崔虎, 罗爱平, 徐文成, 罗智超 2019 激光与光电子学进展 56 79
Wei Z W, Liu M, Cui H, Luo A P, Xu W C, Luo Z C 2019 Laser & Optoelectronics Progress 56 79
[17] He W, Pang M, Yeh D H, Huang J, Menyuk C R, Russell P S J 2019 Nat. Commun. 10 1Google Scholar
[18] Liu X M, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901Google Scholar
[19] Liu X M, Pang M 2019 Laser Photonics Rev. 13 1800333Google Scholar
[20] Peng J, Boscolo S, Zhao Z, Zeng H 2019 Sci. Adv. 5 eaax1110Google Scholar
[21] Goda K, Jalali B 2013 Nat. Photonics 7 102Google Scholar
[22] Goda K, Solli D R, Tsia K K, Jalali B 2009 Phys. Rev. A 80 043821Google Scholar
[23] Malomed BA 1991 Phys. Rev. A 44 6954Google Scholar
[24] Krupa K, Nithyanandan K, Andral U, Tchofo-Dinda P, Grelu P 2017 Phys. Rev. Lett. 118 243901Google Scholar
[25] Liu X M, Yao X K, Cui Y D 2018 Phys. Rev. Lett. 121 023905Google Scholar
[26] 廖睿, 文锦辉, 刘智刚, 邓莉, 赖天树, 林位株 2002 中国激光 29 53
Liao R, Wen J H, Liu Z G, Deng L, Lai T S, Lin W Z 2002 Chin. J. Lasers 29 53
[27] 王胭脂, 邵建达, 董洪成, 晋云霞, 王清月 2011 60 018101Google Scholar
Wang Y Z, Shao J D, Dong H C, Jin Y X, Wang Q Y 2011 Acta Phys. Sin. 60 018101Google Scholar
[28] 范海涛, 王胭脂, 王兆华, 叶蓬, 胡国行, 秦爽, 何会军, 易葵, 邵建达, 魏志义 2015 64 144204Google Scholar
Fan H T, Wang Y Z, Wang Z H, Ye P, Hu G H, Qin S, He H J, Yi K, Shao J D, Wei Z Y 2015 Acta Phys. Sin. 64 144204Google Scholar
[29] Herink G, Kurtz F, Jalali B, Solli D R, Ropers C 2017 Science 356 50Google Scholar
[30] Lederer M J, Luther-Davies B, Tan H H, Jagadish C, Soto-Crespo J M 1999 J. Opt. Soc. Am. B 16 895Google Scholar
[31] Han X, Wu J, Zeng H 2008 Opt. Express 16 3686Google Scholar
[32] Kurtz F, Ropers C, Herink G 2020 Nat. Photonics 14 9Google Scholar
[33] Zavyalov A, Iliew R, Egorov O, Lederer F 2009 Phys. Rev. A 79 053841Google Scholar
-
图 1 基于钛宝石激光器的TS-DFT实验装置图 (OC, 输出耦合镜; P, 棱镜对; CM, 啁啾镜对; L, 透镜; Ti:S, 钛宝石晶体; M, 平面镜; FC, 光纤耦合器; SMF, 单模光纤; PD, 光电探测器; OSC, 高速示波器)
Fig. 1. TS-DFT experimental setup based on Ti: sapphire laser (OC, output coupler; P, prim; CM, chirped mirror; L, lens; Ti:S, Ti:sapphire; M, mirror; FC, fiber coupler; SMF, single-mode fiber; PD, photodetecter; OSC, high-speed oscilloscope).
图 2 实时观察105 fs时间间隔孤子分子参数图 (a) 孤子分子的光谱演化图样和对应的单帧光谱图; (b) 自相关的演化图和对应的单帧自相关曲线; (c) 相对相位演化图; (d) 光谱仪与DFT测到的光谱对比图
Fig. 2. Experimental real-time observation soliton molecules with a separation of 105 fs: (a) Interferograms of a soliton bound state and its single-shot spectrum; (b) the field autocorrelations of the momentary bound state; (c) relative phase evolution diagram; (d) optical spectrum measured by OSA and DFT.
图 3 实时观察180 fs时间间隔孤子分子数据图 (a) 孤子分子的光谱演化图; (b)自相关演化图; (c)相对相位演化图; (d)光谱仪与DFT测到的光谱对比图
Fig. 3. Experimental real-time observation stable soliton molecules with a separate of 180 fs: (a) Interferograms of a soliton bound state; (b) the field autocorrelations of the momentary bound state; (c) relative phase evolution diagram; (d) optical spectra measured by OSA and DFT.
图 4 滑动相位孤子分子数据图 (a) 光谱演化图; (b) 自相关演化图; (c) 相对相位演化图; (d)光谱仪与DFT测到的光谱对比图
Fig. 4. Experimental real-time observation soliton molecules with a sliding phase: (a) Interferograms of a soliton bound state; (b) the field autocorrelations of the momentary bound state; (c) relative phase evolution diagram; (d) optical spectra measured by OSA and DFT.
-
[1] Kivshar Y S, Agrawal G P 2003 Optical Solitons: from Fibers to Photonic Crystals (SanDiego: Academic Press) p5
[2] Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar
[3] Melo F, Douady S 1993 Phys. Rev. Lett. 71 3283Google Scholar
[4] Denschlag J 2000 Science 287 97Google Scholar
[5] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G 2010 Nat. Phys. 6 790Google Scholar
[6] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 63 084202Google Scholar
Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202Google Scholar
[7] Shi H S, Song Y J, Wang Q Y, Zhao L M, Hu M L 2018 Opt. Lett. 43 1623Google Scholar
[8] 徐佳, 吴思达, 刘江, 孙若愚, 王璞 2013 中国激光 40 0702003Google Scholar
Xu J, Wu S D, Liu J, Sun R Y, Wang P 2013 Chin. J. Lasers 40 0702003Google Scholar
[9] Pang M, He W, Jiang X, Russell P S J 2016 Nat. Photonics 10 454Google Scholar
[10] 王光斗, 杨光, 刘艳格, 王志 2017 中国激光 44 83
Wang G D, Yang G, Liu Y G, Wang Z 2017 Chin. J. Lasers 44 83
[11] Huang Q, Wang T, Zou C, AlAraimi M, Rozhin A, Mou C 2018 Chin. Opt. Lett. 16 020019Google Scholar
[12] Zhao C, Huang Q, Al Araimi M, Rozhin A, Sergeyev S, Mou C 2019 Chin. Opt. Lett. 17 020012Google Scholar
[13] Hause A, Hartwig H, Böhm M, Mitschke F 2008 Phys. Rev. A 78 63817Google Scholar
[14] Wang Z Q, Nithyanandan K, Coillet A, Tchofo-Dinda P, Grelu P 2019 Nat. Commun. 10 830Google Scholar
[15] 王志, 贺瑞敬, 刘艳格 2019 中国激光 46 13
Wang Z, He R J, Liu Y G 2019 Chin. J. Lasers 46 13
[16] 魏志伟, 刘萌, 崔虎, 罗爱平, 徐文成, 罗智超 2019 激光与光电子学进展 56 79
Wei Z W, Liu M, Cui H, Luo A P, Xu W C, Luo Z C 2019 Laser & Optoelectronics Progress 56 79
[17] He W, Pang M, Yeh D H, Huang J, Menyuk C R, Russell P S J 2019 Nat. Commun. 10 1Google Scholar
[18] Liu X M, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901Google Scholar
[19] Liu X M, Pang M 2019 Laser Photonics Rev. 13 1800333Google Scholar
[20] Peng J, Boscolo S, Zhao Z, Zeng H 2019 Sci. Adv. 5 eaax1110Google Scholar
[21] Goda K, Jalali B 2013 Nat. Photonics 7 102Google Scholar
[22] Goda K, Solli D R, Tsia K K, Jalali B 2009 Phys. Rev. A 80 043821Google Scholar
[23] Malomed BA 1991 Phys. Rev. A 44 6954Google Scholar
[24] Krupa K, Nithyanandan K, Andral U, Tchofo-Dinda P, Grelu P 2017 Phys. Rev. Lett. 118 243901Google Scholar
[25] Liu X M, Yao X K, Cui Y D 2018 Phys. Rev. Lett. 121 023905Google Scholar
[26] 廖睿, 文锦辉, 刘智刚, 邓莉, 赖天树, 林位株 2002 中国激光 29 53
Liao R, Wen J H, Liu Z G, Deng L, Lai T S, Lin W Z 2002 Chin. J. Lasers 29 53
[27] 王胭脂, 邵建达, 董洪成, 晋云霞, 王清月 2011 60 018101Google Scholar
Wang Y Z, Shao J D, Dong H C, Jin Y X, Wang Q Y 2011 Acta Phys. Sin. 60 018101Google Scholar
[28] 范海涛, 王胭脂, 王兆华, 叶蓬, 胡国行, 秦爽, 何会军, 易葵, 邵建达, 魏志义 2015 64 144204Google Scholar
Fan H T, Wang Y Z, Wang Z H, Ye P, Hu G H, Qin S, He H J, Yi K, Shao J D, Wei Z Y 2015 Acta Phys. Sin. 64 144204Google Scholar
[29] Herink G, Kurtz F, Jalali B, Solli D R, Ropers C 2017 Science 356 50Google Scholar
[30] Lederer M J, Luther-Davies B, Tan H H, Jagadish C, Soto-Crespo J M 1999 J. Opt. Soc. Am. B 16 895Google Scholar
[31] Han X, Wu J, Zeng H 2008 Opt. Express 16 3686Google Scholar
[32] Kurtz F, Ropers C, Herink G 2020 Nat. Photonics 14 9Google Scholar
[33] Zavyalov A, Iliew R, Egorov O, Lederer F 2009 Phys. Rev. A 79 053841Google Scholar
计量
- 文章访问数: 8347
- PDF下载量: 164
- 被引次数: 0