搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微尺度下N2–O2电晕放电的动态特性二维仿真

柴钰 张妮 刘杰 殷宁 刘树林 张晶园

引用本文:
Citation:

微尺度下N2–O2电晕放电的动态特性二维仿真

柴钰, 张妮, 刘杰, 殷宁, 刘树林, 张晶园

Two-dimensional simulation of dynamic characteristics of N2–O2 corona discharge at micro scale

Chai Yu, Zhang Ni, Liu Jie, Yin Ning, Liu Shu-Lin, Zhang Jing-Yuan
PDF
HTML
导出引用
  • 微纳电离式气体传感器基于微尺度放电原理, 具有响应快、精度高、易集成等特点, 有望实现对气体的快速准确检测. 目前缺少对该新型传感器极间放电过程的系统分析. 对此本文采用流体-化学动力学混合方法, 建立了常温常压下大气中N2-O2混合气体在微米间隙-纳米尖端场域的二维空间放电模型, 并通过分析空间电子输运机制、放电电流密度、空间电场强度之间的相互耦合关系, 阐明了该场域下空间放电的动态发展过程, 完善了微纳电离式气体传感器内部放电机理, 且分析了不同极间距对空间放电的影响规律. 结果表明: 该场域下空间电场随正负离子的产生与消耗达到动态平衡而保持恒定, 使空间放电得以维持, 放电电流密度趋于稳定; 且随着极间距的减小放电电流密度呈现出先增大后减小的趋势, 此特性为传感器的优化提供了一定的理论指导.
    Based on the principle of micro-scale discharge, the micro-nano ionization gas sensor has the characteristics of fast response, high precision and easy integration. It is expected to achieve rapid and accurate detection of gas. At present, there is a lack of systematic analysis of the inter-polar discharge process of the new sensor. This paper uses the fluid-chemical dynamics methodology to create a 2D space discharge model of the N2-O2 mixed gas at the micron gap and the nano-tip field in ambient atmosphere at normal temperature and pressure. Meanwhile, by analyzing the mutual coupling between the space electron transport process, the discharge current density, and the space electric field strength, the paper clarifies the dynamics of space discharge in the field, improves how internal discharges work in such micro-nano structured ionization gas sensors, and analyzes the pattern of influence of different polar distances on space discharges. The results show that the electric field in the space remains constant as the production and consumption of positive and negative ions reaches a dynamic equilibrium in the field. It is reflected in the field strengthening effect of positive ion groups to the cathode plate and of negative ion groups to the anode plate, as well as in the field weakening effect between positive and negative ion groups. The resulting stable and strong electric field of the cathode makes sure that space discharge is maintained, and the discharge current density stabilizes. Initially, as the polar distance decreases gradually, the electric field strength between the poles and plates increases. It plays a leading role in the accumulation of electron energy and in the increase in the number density of electrons, thus leading to the increase of the output current density up to the peak value when the polar distance D = 50 μm. As the polar distance decreases, the field strength between the poles and plates increases. Despite that, when electrons accumulate energy up to such a level that gas molecules can be ionized, the necessary movement distance and the distance required to increase the number density of electrons decreases. As a result, the degree of ionization weakens, and the field strengthening effect of positive ions decreases. In other words, the increment of the field strength caused by positive ions at the tip decreases, and in turn, the discharge current density decreases. This pattern serves as a theoretical support in the optimization of the micro-nano structured ionization gas sensors.
      通信作者: 张晶园, jyzhang@xust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51777167, 51604217, 11974275)、中国博士后科学基金(批准号: 2018M643811XB)和陕西省教育厅自然科学基金(批准号: 19JK0529)资助的课题
      Corresponding author: Zhang Jing-Yuan, jyzhang@xust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51777167, 51604217, 11974275), the China Postdoctoral Science Foundation (Grant No. 2018M643811XB), and the Natural Science Foundation of Education Bureau of Shaanxi Province, China (Grant No. 19JK0529)
    [1]

    谢云龙, 钟国, 杜高辉 2012 化学学报 70 1221Google Scholar

    Xie Y L, Zhong G, Du G H 2012 Acta Chim. Sinica 70 1221Google Scholar

    [2]

    常进, 张为军, 刘卓峰, 陈兴宇 2016 电子元件与材料 35 15Google Scholar

    Chang J, Zhang W J, Liu Z F, Chen X Y 2016 Electr. Comp. Mater. 35 15Google Scholar

    [3]

    Ashish M, Nikhil K, Eric L, Wei B Q, Pulickel M A 2003 Nature 424 171Google Scholar

    [4]

    刘凯, 邹德福, 廉五州, 马丽铃, 马丽敏, 陈志东 2016 仪表技术与传感器 1 10Google Scholar

    Liu K, Zou D F, Lian W Z, Ma L L, Ma L M, Chen Z D 2016 Instr. Techn. Sensor 1 10Google Scholar

    [5]

    张一茗, 袁欢, 穆广祺, 宋亚凯, 张文涛, 王小华 2016 高压电器 52 134Google Scholar

    Zhang Y M, Yuan H, Mu G Q, Song Y K, Zhang W T, Wang X H 2016 High Volt. Appar. 52 134Google Scholar

    [6]

    Trichel G W 1938 Phys. Rev. 54 1078Google Scholar

    [7]

    廖瑞金, 刘康淋, 伍飞飞, 杨丽君, 周之 2014 高电压技术 40 965Google Scholar

    Liao R J, Liu K L, Wu F F, Yang L J, Zhou Z 2014 High Volt. Eng. 40 965Google Scholar

    [8]

    郑殿春, 夏云双, 赵大伟, 陈春天, 王佳 2013 电机与控制学报 17 75Google Scholar

    Zheng D C, Xia Y S, Zhao D W, Chen C T, Wang J 2013 Electr. Mach. Contrl. 17 75Google Scholar

    [9]

    Zhang J Y, Zhang Y, Pan Z G, Yang S, Shi J H, Li S T, Min D M, Li X, Wang X H, Liu D X, Yang A J 2015 Appl. Phys. Lett. 107 093104Google Scholar

    [10]

    Zhang Y, Li S T, Zhang J Y, Pan Z G, Min D M, Li Xin, Song X P, Liu J H 2013 Sci. Rep. 3 1267Google Scholar

    [11]

    柴钰, 弓丽萍, 张晶园, 赵永秀 2019 电工技术学报 34 4870Google Scholar

    Chai Y, Gong L P, Zhang J Y, Zhao Y X 2019 Trans. Chin. Electrotechnical Soc. 34 4870Google Scholar

    [12]

    Yang H S, Tan Z M, Liu Y, Ma Z X, Zhang L 2013 IEEE T. Nanotechnol. 12 1037Google Scholar

    [13]

    Nebol’sin V A, Spiridonov B A, Dunaev A I, Bogdanovich E V 2016 Inorg. Mater. 53 595Google Scholar

    [14]

    程永红, 孟国栋, 董承业 2017 电工技术学报 32 13Google Scholar

    Cheng Y H, Meng G D, Dong C Y 2017 Trans. Chin. Electrotechnical Soc. 32 13Google Scholar

    [15]

    孔迪, 李建周, 张昊, 陈昶 2014 电子设计工程 22 127Google Scholar

    Kong D, Li J Z, Zhang H, Chei C 2014 Int. Electr. Elem. 22 127Google Scholar

    [16]

    廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 61 245201Google Scholar

    Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201Google Scholar

    [17]

    周雪会, 陈登义, 陈则煌 2016 陶瓷避雷器 5 152Google Scholar

    Zhou X H, Chen D Y, Chen Z H 2016 Insulators and Surge Arresters 5 152Google Scholar

    [18]

    陈硕,张金英,杨天辰,李璐,郑天祥 2017 智能电网 5 812Google Scholar

    Chen S, Zhang J Y, Yang T C, Li L, Zheng T X 2017 Smart Grid 5 812Google Scholar

    [19]

    李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞 2012 60 125204

    Li X C, Yuan N, Jia P Y, Chang Y Y, Ji Y F 2012 Acta Phys. Sin. 60 125204

    [20]

    李维虎, 张锦, 万保权, 何旺龄 2018 高压电器 54 0129Google Scholar

    Li W H, Zhang J, Wan B Q, He W L 2018 High Volt. Appar. 54 0129Google Scholar

    [21]

    Georghiou G E, Papadakis A P, Morroe R, Metaxas A C 2005 Appl. Phys. 38 303Google Scholar

    [22]

    Ashish M, Nikhil K, Eric L, Wei B Q, Pulickel M A 2003 Nature 424 172

    [23]

    Akishev Y S, Grushin M E, Karal’nik V B, Trushkin N I 2000 Plasma Phys. Rep. 27 532

    [24]

    Morrow R 1991 IEEE T. Electr. Insul. 26 398Google Scholar

    [25]

    Yin H, Zhang B, He J L, Wang W Z 2014 Phys. Plasmas 21 032116Google Scholar

    [26]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第243—254页

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press) pp243–254

    [27]

    徐翱,金大志,王亚军,陈 磊,谈效华 2020 高压电技术 46 715Google Scholar

    Xu A, Jin D Z, Wang Y J, Chen L, Tan X H 2020 High Volt. Eng. 46 715Google Scholar

    [28]

    伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之 2013 62 115201Google Scholar

    Wu F F, Liao R J, Yang L J, Liu X H, Wang K, Zhou Z 2013 Acta Phys. Sin. 62 115201Google Scholar

    [29]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201Google Scholar

    [30]

    刘学悫 1980 阴极电子学 (北京: 科学出版社) 第244—273

    Liu X Q 1980 Cathode electronics (Beijing: Science Press) pp244–273

  • 图 1  放电原理图

    Fig. 1.  Discharge schematic diagram.

    图 2  不同时刻的电子密度分布图 (a) t1 = 0.1 ns; (b) t2 = 0.3 ns; (c) t3 = 1 ns; (d) t4 = 100 ns; (e) t5 = 150 ns; (f) t6 = 200 ns

    Fig. 2.  Electron density maps at different times: (a) t1 = 0.1 ns; (b) t2 = 0.3 ns; (c) t3 = 1 ns; (d) t4 = 100 ns; (e) t5 = 150 ns; (f) t6 = 200 ns.

    图 3  中轴线上不同位置处电场强度随时间的变化曲线

    Fig. 3.  Curves of electric field strength with time at different positions on the central axis.

    图 4  负极板上外加电压随时间的变化曲线

    Fig. 4.  Time-varying curve of applied voltage on the negative plate.

    图 5  不同时刻正负离子密度轴向分布 (a) t1 = 100 ns; (b) t2 = 140 ns; (c) t3 = 150 ns; (d) t4 = 200 ns

    Fig. 5.  Axial distributions of positive and negative ion density at different times: (a) t1 = 100 ns; (b) t2 = 140 ns; (c) t3 = 150 ns; (d) t4 = 200 ns

    图 6  放电电流密度随时间的变化曲线

    Fig. 6.  Curve of discharge current density with time.

    图 7  尖端处的电场强度随时间的变化曲线

    Fig. 7.  Curve of the electric field strength at the tip with time.

    图 8  不同极间距下的放电电流密度 (a) 所有时间; (b) 稳定时刻

    Fig. 8.  The intensity of the electric field at the different poles: (a) All the time; (b) stable time.

    图 9  不同极间距下尖端处电场强度随时间的变化曲线

    Fig. 9.  Variation curve of electric field strength with time at the tip under different pole spacing.

    图 10  不同极间距下尖端处的场强增量

    Fig. 10.  The increment of field strength at the tips of different pole spaces.

    表 1  N2-O2等离子体化学反应

    Table 1.  N2-O2 plasma chemical reactions.

    类型序号反应式反应速率参考文献
    电子碰撞反应R1${\rm{e}} + {{\rm{N}}_{\rm{2}}} \to {\rm{e}} +{\rm{ e}} +{\rm{ N}}_{\rm{2}}^{{ + }} $f (ε)[29]
    R2${\rm{e}} + {{\rm{O}}_2} \to {\rm{e}} + {\rm{e}} + {\rm{O}}_2^ + $f (ε)[29]
    R3${\rm{e}} + {\rm{O}}_4^ + \to 2{{\rm{O}}_2}$1.4 × 10–42(300/Te)0.5 mol·s–1[29]
    R4${\rm{e}} + {\rm{O}}_2^ + \to 2{\rm{O}}$2.0 × 10–13(300/Te) mol·s–1[29]
    R5${\rm{e}} + 2{{\rm{O}}_2} \to {{\rm{O}}_2} + {\rm{O}}_2^ - $2.0 × 10–41(300/Te) mol·s–1·m–6[29]
    重粒子反应R6${\rm{O}}_{\rm{2}}^{{ + }}{{ + }}{{\rm{O}}_{\rm{2}}}{{ + }}{{\rm{N}}_{\rm{2}}} \to {\rm{O}}_{\rm{4}}^{{ + }}{{ + }}{{\rm{N}}_2}$2.4 × 10–42 mol·s–1·m–6[29]
    R7${{\rm{N}}_{\rm{2}}}{\rm{O}}_{\rm{2}}^{{ + }}{{ + }}{{\rm{O}}_{\rm{2}}} \to {\rm{O}}_{\rm{4}}^{{ + }}{{ + }}{{\rm{N}}_2}$1.0 × 10–15 mol·s–1·m–3[29]
    R8${{\rm{N}}_{\rm{2}}}{\rm{O}}_{\rm{2}}^{{ + }}{{ + }}{{\rm{N}}_{\rm{2}}} \to {\rm{O}}_2^{{ + }}{{ + 2}}{{\rm{N}}_{\rm{2}}}$4.3 × 10–10 mol·s–1·m–3[29]
    R9${\rm{O}}_{\rm{2}}^{{ + }}{{ + 2}}{{\rm{N}}_{\rm{2}}} \to {{\rm{N}}_{\rm{2}}}{\rm{O}}_{\rm{2}}^{{ + }}{{ + }}{{\rm{N}}_{\rm{2}}}$9.0 × 10–43 mol·s–1·m–6[29]
    R10${{\rm{O}}_{\rm{2}}} +{\rm{ N}}_{\rm{2}}^{{ + }} \to {{\rm{N}}_{\rm{2}}} +{\rm{ O}}_{\rm{2}}^{{ + }}$6.0 × 10–17 mol·s–1·m–3[29]
    R11${\rm{N}}_{\rm{2}}^{{ + }}{{ + }}{{\rm{N}}_{\rm{2}}}{{ + }}{{\rm{O}}_{\rm{2}}} \to {{\rm{O}}_{\rm{2}}} + {\rm{N}}_{\rm{4}}^{{ + }}$5.0 × 10–41 mol·s–1·m–6[29]
    R12${{\rm{O}}_{\rm{2}}}+ {\rm{ N}}_{\rm{4}}^{{ + }} \to {\rm{2}}{{\rm{N}}_{\rm{2}}}+ {\rm{ O}}_{\rm{2}}^{{ + }}$2.5 × 10–16 mol·s–1·m–3[29]
    R13${\rm{2}}{{\rm{N}}_{\rm{2}}}+ {\rm{ N}}_{\rm{2}}^{{ + }} \to {{\rm{N}}_{\rm{2}}}+ {\rm{ N}}_{\rm{4}}^{{ + }}$5.0 × 10–41 mol·s–1·m–6[29]
    R14${\rm{O}}_{\rm{2}}^{{ + }}+ {\rm{ 2}}{{\rm{O}}_{\rm{2}}} \to {\rm{O}}_{\rm{4}}^{{ + }}{{ + }}{{\rm{O}}_{\rm{2}}}$2.4 × 10–42 mol·s–1·m–6[29]
    R15${\rm{O}}_{\rm{4}}^{{ + }}+ {\rm{ O}}_{\rm{2}}^ - \to {\rm{3}}{{\rm{O}}_{\rm{2}}}$1.0 × 10–13 mol·s–1·m–3[29]
    R16${\rm{O}}_{\rm{4}}^{{ + }}+ {\rm{ O}}_{\rm{2}}^ - {{ + }}{{\rm{N}}_2} \to {\rm{3}}{{\rm{O}}_{\rm{2}}} + {{\rm{N}}_{\rm{2}}}$2.0 × 10–17 mol·s–1·m–6[29]
    R17${\rm{O}}_{\rm{4}}^{{ + }}+ {\rm{ O}}_{\rm{2}}^ - {{ + }}{{\rm{O}}_{\rm{2}}} \to {\rm{3}}{{\rm{O}}_{\rm{2}}}{{ + }}{{\rm{O}}_{\rm{2}}}$2.0 × 10–17 mol·s–1·m–6[29]
    R18${\rm{O}}_{\rm{2}}^{{ + }}+ {\rm{ O}}_{\rm{2}}^ - {{ + }}{{\rm{O}}_{\rm{2}}} \to {\rm{2}}{{\rm{O}}_{\rm{2}}}{{ + }}{{\rm{O}}_{\rm{2}}}$22.0 × 10–17 mol·s–1·m–6[29]
    R19${\rm{O}}_{\rm{2}}^{{ + }}+ {\rm{ O}}_{\rm{2}}^ - {{ + }}{{\rm{N}}_{\rm{2}}} \to {\rm{2}}{{\rm{O}}_{\rm{2}}}{{ + }}{{\rm{N}}_{\rm{2}}}$2.0 × 10–17 mol·s–1·m–6[29]
    下载: 导出CSV

    表 2  表面反应

    Table 2.  Surface reactions.

    序号反应式针电极(阴极)板电极(阳极)
    γεi/eVγεi/eV
    R20${\rm{e}} + {\rm{N}}_{\rm{2}}^{{ + }} \to {{\rm{N}}_{\rm{2}}}$0.05400
    R21${\rm{e }}+{{\rm{N}}_{\rm{2}}}{\rm{O}}_{\rm{2}}^{{ + }} \to {{\rm{N}}_{\rm{2}}}{{ + }}{{\rm{O}}_{\rm{2}}}$0.05400
    R22${\rm{e}} + {\rm{N}}_{\rm{4}}^{{ + }} \to {\rm{2}}{{\rm{N}}_{\rm{2}}}$0.05400
    R23${\rm{e}} + {\rm{O}}_{\rm{2}}^{{ + }} \to {{\rm{O}}_{\rm{2}}}$0.05400
    R24${\rm{e}} +{\rm{ O}}_{\rm{4}}^{{ + }} \to 2{{\rm{O}}_{\rm{2}}}$0.05400
    R25${\rm{e}} +{\rm{ O}}_{\rm{2}}^{{ - }} \to {{\rm{O}}_{\rm{2}}}$0000
    下载: 导出CSV
    Baidu
  • [1]

    谢云龙, 钟国, 杜高辉 2012 化学学报 70 1221Google Scholar

    Xie Y L, Zhong G, Du G H 2012 Acta Chim. Sinica 70 1221Google Scholar

    [2]

    常进, 张为军, 刘卓峰, 陈兴宇 2016 电子元件与材料 35 15Google Scholar

    Chang J, Zhang W J, Liu Z F, Chen X Y 2016 Electr. Comp. Mater. 35 15Google Scholar

    [3]

    Ashish M, Nikhil K, Eric L, Wei B Q, Pulickel M A 2003 Nature 424 171Google Scholar

    [4]

    刘凯, 邹德福, 廉五州, 马丽铃, 马丽敏, 陈志东 2016 仪表技术与传感器 1 10Google Scholar

    Liu K, Zou D F, Lian W Z, Ma L L, Ma L M, Chen Z D 2016 Instr. Techn. Sensor 1 10Google Scholar

    [5]

    张一茗, 袁欢, 穆广祺, 宋亚凯, 张文涛, 王小华 2016 高压电器 52 134Google Scholar

    Zhang Y M, Yuan H, Mu G Q, Song Y K, Zhang W T, Wang X H 2016 High Volt. Appar. 52 134Google Scholar

    [6]

    Trichel G W 1938 Phys. Rev. 54 1078Google Scholar

    [7]

    廖瑞金, 刘康淋, 伍飞飞, 杨丽君, 周之 2014 高电压技术 40 965Google Scholar

    Liao R J, Liu K L, Wu F F, Yang L J, Zhou Z 2014 High Volt. Eng. 40 965Google Scholar

    [8]

    郑殿春, 夏云双, 赵大伟, 陈春天, 王佳 2013 电机与控制学报 17 75Google Scholar

    Zheng D C, Xia Y S, Zhao D W, Chen C T, Wang J 2013 Electr. Mach. Contrl. 17 75Google Scholar

    [9]

    Zhang J Y, Zhang Y, Pan Z G, Yang S, Shi J H, Li S T, Min D M, Li X, Wang X H, Liu D X, Yang A J 2015 Appl. Phys. Lett. 107 093104Google Scholar

    [10]

    Zhang Y, Li S T, Zhang J Y, Pan Z G, Min D M, Li Xin, Song X P, Liu J H 2013 Sci. Rep. 3 1267Google Scholar

    [11]

    柴钰, 弓丽萍, 张晶园, 赵永秀 2019 电工技术学报 34 4870Google Scholar

    Chai Y, Gong L P, Zhang J Y, Zhao Y X 2019 Trans. Chin. Electrotechnical Soc. 34 4870Google Scholar

    [12]

    Yang H S, Tan Z M, Liu Y, Ma Z X, Zhang L 2013 IEEE T. Nanotechnol. 12 1037Google Scholar

    [13]

    Nebol’sin V A, Spiridonov B A, Dunaev A I, Bogdanovich E V 2016 Inorg. Mater. 53 595Google Scholar

    [14]

    程永红, 孟国栋, 董承业 2017 电工技术学报 32 13Google Scholar

    Cheng Y H, Meng G D, Dong C Y 2017 Trans. Chin. Electrotechnical Soc. 32 13Google Scholar

    [15]

    孔迪, 李建周, 张昊, 陈昶 2014 电子设计工程 22 127Google Scholar

    Kong D, Li J Z, Zhang H, Chei C 2014 Int. Electr. Elem. 22 127Google Scholar

    [16]

    廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 61 245201Google Scholar

    Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201Google Scholar

    [17]

    周雪会, 陈登义, 陈则煌 2016 陶瓷避雷器 5 152Google Scholar

    Zhou X H, Chen D Y, Chen Z H 2016 Insulators and Surge Arresters 5 152Google Scholar

    [18]

    陈硕,张金英,杨天辰,李璐,郑天祥 2017 智能电网 5 812Google Scholar

    Chen S, Zhang J Y, Yang T C, Li L, Zheng T X 2017 Smart Grid 5 812Google Scholar

    [19]

    李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞 2012 60 125204

    Li X C, Yuan N, Jia P Y, Chang Y Y, Ji Y F 2012 Acta Phys. Sin. 60 125204

    [20]

    李维虎, 张锦, 万保权, 何旺龄 2018 高压电器 54 0129Google Scholar

    Li W H, Zhang J, Wan B Q, He W L 2018 High Volt. Appar. 54 0129Google Scholar

    [21]

    Georghiou G E, Papadakis A P, Morroe R, Metaxas A C 2005 Appl. Phys. 38 303Google Scholar

    [22]

    Ashish M, Nikhil K, Eric L, Wei B Q, Pulickel M A 2003 Nature 424 172

    [23]

    Akishev Y S, Grushin M E, Karal’nik V B, Trushkin N I 2000 Plasma Phys. Rep. 27 532

    [24]

    Morrow R 1991 IEEE T. Electr. Insul. 26 398Google Scholar

    [25]

    Yin H, Zhang B, He J L, Wang W Z 2014 Phys. Plasmas 21 032116Google Scholar

    [26]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第243—254页

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press) pp243–254

    [27]

    徐翱,金大志,王亚军,陈 磊,谈效华 2020 高压电技术 46 715Google Scholar

    Xu A, Jin D Z, Wang Y J, Chen L, Tan X H 2020 High Volt. Eng. 46 715Google Scholar

    [28]

    伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之 2013 62 115201Google Scholar

    Wu F F, Liao R J, Yang L J, Liu X H, Wang K, Zhou Z 2013 Acta Phys. Sin. 62 115201Google Scholar

    [29]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201Google Scholar

    [30]

    刘学悫 1980 阴极电子学 (北京: 科学出版社) 第244—273

    Liu X Q 1980 Cathode electronics (Beijing: Science Press) pp244–273

  • [1] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真.  , 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法.  , 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [3] 郝广辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟. 真空沟道结构GaAs光电阴极电子发射特性.  , 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [4] 张兴玉. 电流密度对微米硅电极断裂行为的影响.  , 2020, 69(24): 248201. doi: 10.7498/aps.69.20200915
    [5] 方云团, 王誉雅, 夏景. 基于光学Parity-Time对称微腔结构的大范围电场传感器.  , 2019, 68(19): 194201. doi: 10.7498/aps.68.20190784
    [6] 程鹏, 杨育梅. 临界电流密度对圆柱状超导体力学特性的影响.  , 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [7] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响.  , 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [8] 刘康淋, 廖瑞金, 赵学童. 声脉冲法空间电荷测量系统的研究.  , 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [9] 王益军, 严诚. 不同电场下碳纳米管场致发射电流密度研究.  , 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [10] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用.  , 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [11] 孙富宇, 吴振华, 张开春. 高电流密度圆柱状电子光学系统设计.  , 2010, 59(3): 1721-1725. doi: 10.7498/aps.59.1721
    [12] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化.  , 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [13] 刘龙平, 赵振杰, 黄灿星, 吴志明, 杨燮龙. 复合结构丝中的电流密度分布和巨磁阻抗效应.  , 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [14] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究.  , 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
    [15] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响.  , 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [16] 刘少斌, 莫锦军, 袁乃昌. 等离子体的分段线性电流密度递推卷积FDTD算法.  , 2004, 53(3): 778-782. doi: 10.7498/aps.53.778
    [17] 梁芳营, 青 心, 钟玉荣, 丁双红. 载荷波动在超导特性中的研究.  , 2003, 52(10): 2584-2588. doi: 10.7498/aps.52.2584
    [18] 孙俊生, 武传松. 熔池表面形状对电弧电流密度分布的影响.  , 2000, 49(12): 2427-2432. doi: 10.7498/aps.49.2427
    [19] 韩谷昌, 韩汉民, 王智河, 王顺喜, 刘小宁, 刘智民, 奚正平, 周廉. 银包套Bi(2223)带材临界电流密度的低温强磁场特性.  , 1995, 44(8): 1274-1278. doi: 10.7498/aps.44.1274
    [20] 顾世杰, 霍崇儒. 丝状发光的GaAs注入式半导体激光器中结电流密度与载流子浓度的分布.  , 1979, 28(1): 21-32. doi: 10.7498/aps.28.21
计量
  • 文章访问数:  7247
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-05-21
  • 上网日期:  2020-05-25
  • 刊出日期:  2020-08-20

/

返回文章
返回
Baidu
map