搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

选取任意庞加莱截面的新方法

张识 王攀 张瑞浩 陈红

引用本文:
Citation:

选取任意庞加莱截面的新方法

张识, 王攀, 张瑞浩, 陈红

A new method for selecting arbitrary Poincare section

Zhang Shi, Wang Pan, Zhang Rui-Hao, Chen Hong
PDF
HTML
导出引用
  • 针对用庞加莱截面分析非线性系统时较难选择合适截面的问题, 提出了一种投影时域法. 该方法可以在时域上直观地判断所选平面是否合适并实时准确地调整平面的方向与位置. 文中给出了投影时域法的完整定义并从理论上详细分析了该方法的原理; 同时研究了在时域上判断所选平面是否是合适的庞加莱截面的条件以及如何调整所选平面的方向与位置; 最后, 利用投影时域法对三种典型的三维或四维非线性系统进行了仿真实验, 实验结果证明了该方法的有效性和实用性.
    Poincare section is an important method for analyzing nonlinear systems. Choosing a suitable plane as the Poincare section is the key to using the Poincare section to analyze a nonlinear system. At present, it is still a difficult problem to select a suitable Poincare section when analyzing a nonlinear system. This is caused by two reasons. On the one hand, the classical method for selecting a partial Poincare section only applies to analyze a part of the nonlinear system orbit, whether the selected plane is a suitable Poincare section is affected by the different initial points. On the other hand, according to the actual situation, different researchers have different needs for Poincare section. In order to solve this problem, a new method named Projection Time Domain method is put forward in this paper. This method can help us not only directly reflect the intersection between the nonlinear system orbit and the selected plane, but also accurately adjust the direction and position of the selected plane in real time. It can be used to quickly find a plane which fully intersects the nonlinear system orbit or an arbitrary plane as a Poincare section. In this paper, the complete definition of Projection Time Domain method is given firstly. Then, the principle of Projection Time Domain method is theoretically analyzed in detail. At the same time, the rules for determining whether the selected plane is a suitable Poincare section in the time domain are also studied. Finally, it is introduced how to quantify the direction and position of the selected plane in the phase space. The simulation experiments are conducted with three typical three-dimensional and four-dimensional nonlinear systems by using this new method. The experimental results consistent with the theoretical analysis, which demonstrate the effectiveness and practicability of this method.
      通信作者: 陈红, chenhongdeepred@163.com
    • 基金项目: 国家级-国家自然科技基金(61471158)
      Corresponding author: Chen Hong, chenhongdeepred@163.com
    [1]

    刘妮, 梁九卿 2017 66 110502

    Liu N, Liang J Q 2017 Acta Phys. Sin. 66 110502

    [2]

    Bastarrachea-Magnani M A, Lopez-del-Carpio B, Lerma-Hernandez S, Hirsch J G 2015 Phys. Scr 90 068015

    [3]

    Kubin G N 1997 IEEE Workshop on Speech Coding for Telecommunications Proceedings. Back to Basics: Attacking Fundamental Problems in Speech Coding Pocono Manor, USA, Sept 7 - 10, 1997 p7

    [4]

    Jafari A, Almasganj F, Bidhendi M N 2010 Chaos 20 033106Google Scholar

    [5]

    霍铖宇, 庄建军, 黄晓林, 侯凤贞, 宁新宝 2012 61 190506

    Huo C Y, Zhuang J J, Huang X L, Hou F Z, Ning X B 2012 Acta Phys. Sin. 61 190506

    [6]

    李洪云, 岳大光, 梁志强, 伊长虹, 陈建中 2018 62 203401Google Scholar

    Li H Y, Yue D G, Liang Z Q, Yi C H, Chen J Z 2018 Acta Phys. Sin. 62 203401Google Scholar

    [7]

    Tucker W 2002 Phys. D 171 127Google Scholar

    [8]

    张波, 李忠, 毛宗源, 庞敏熙 2001 控制理论与应用 18 796Google Scholar

    Zhang B, Li Z, Mao Z Y, Pang M X 2001 Control Theory & Appl. 18 796Google Scholar

    [9]

    Golestani A, Jahed M M R, Ahmadian K, Omidvarnia A H, Mozayani N 2009 Chaos 19 013137Google Scholar

    [10]

    Wu W J, Chen Z Q, Yuan Z Z 2009 Chaos, Soliton. Fract. 41 2756Google Scholar

    [11]

    Stankevich N V, Kuznetsov A P, Popova E S, Seleznev E P 2017 Commun. Nonlinear Sci. 43 200Google Scholar

    [12]

    王琳, 彭建华, 张立静 2007 深圳大学学报(理工版) 24 290

    Wang L, Peng J H, Zhang L J 2007 J. Shenzhen U. Sci. Eng. 24 290

    [13]

    陈红, 吴玲 2013 62 020507

    Chen H, Wu L 2013 Acta Phys. Sin. 62 020507

    [14]

    Clare M J, Pieter J C, Bernd K, Hinke M O 2008 SIAM J. Appl. Dyn. Syst. 7 712

    [15]

    李正友, 李天伟, 黄谦, 郭姣 2012 应用声学 5 379Google Scholar

    Li Z Y, Li T W, Huang Q, Guo J 2012 Appl. Acoust. 5 379Google Scholar

    [16]

    Mukherjee S, Palit S K, Banerjee S, Wahab A W A, Ariffin M, Bhattacharya D K 2017 Appl. Math. Comput. 301 140

    [17]

    Michalak K 2015 Chaos, Soliton. Fract. 78 215Google Scholar

    [18]

    Babak S, Amir H J 2015 Proceeding of the IEEE 28 th Canadian Conference on Electrical and Computer Engineering Halifax, Canada, May 3−6, 2015 p581

    [19]

    Atefeh G, Ateke G 2018 Chaos, Soliton. Fract. 114 400Google Scholar

    [20]

    Carlos E C S, Daniel P B C 2019 IEEE Access 7 10523Google Scholar

    [21]

    闫登卫, 王丽丹, 段书凯 2018 67 110502Google Scholar

    Yan D W, Wang L D, Duan S K 2018 Acta Phys. Sin. 67 110502Google Scholar

    [22]

    禹思敏 2011 混沌系统与混沌电路(西安: 西安电子科技大学出版社) 第156页

    Yu S M 2011 Chaotic systems and chaotic circuits (Xi’an: Xi’an Electronic University Press) p156 (in Chinese)

    [23]

    刘兴云, 鲁池梅, 程永山 2008 计算机测量与控制 16 834

    Liu X Y, Lü C M, Cheng Y S 2008 Computer Measurement & Contrl 16 834

    [24]

    蔡娜, 井元伟, 姜囡, 张嗣瀛 2009 东北大学学报(自然科学版) 30 313

    Cai N, Jing Y W, Jiang C, Zhang S Y 2009 J. Northeast Univ. 30 313

  • 图 1  轨道在平面上的投影

    Fig. 1.  The projection of a trajectory onto a plane.

    图 2  $F({l_1}(t), {l_2}(t))$${l_3}(t)$的波形

    Fig. 2.  Waveform of $F({l_1}(t), {l_2}(t))$ and ${l_3}(t)$.

    图 3  涡卷的相轨与波形 (a)相轨; (b)波形

    Fig. 3.  Phase trajectoy and waveform of vortex: (a) Phase trajectoy; (b) waveform.

    图 4  平面一的实验结果 (a)时域波形; (b)相图

    Fig. 4.  Experimental results of the first plane: (a) Waveform; (b) phase diagram.

    图 5  平面二的实验结果 (a)时域波形; (b)相图

    Fig. 5.  Experimental results of the second plane: (a) Waveform;(b) phase diagram.

    图 6  平面三的实验结果 (a)时域波形; (b)相图

    Fig. 6.  Experimental results of the third plane: (a) Waveform; (b) phase diagram.

    图 7  平面一的实验结果 (a) C = 0时的波形; (b) C = 0时的相图; (c) C = 1.5时的波形; (d) C = 1.5时的相图; (e) C = –1.5时的波形; (f) C = –1.5时的相图

    Fig. 7.  Experimental results of the first plane: (a) Waveform while C = 0; (b) phase diagram while C = 0; (c) waveform while C = 1.5; (d) phase diagram while C = 1.5; (e) waveform while C = –1.5; (f) phase diagram while C = –1.5.

    图 8  平面二的实验结果 (a)波形; (b)相图

    Fig. 8.  Experimental results of the second plane: (a) Waveform; (b) phase diagram.

    图 9  $w = 0$时的实验结果 (a)波形; (b)相图

    Fig. 9.  Experimental results while $w = 0$: (a) Waveform; (b) phase diagram.

    图 10  $z = 0$时的实验结果 (a)波形; (b)相图

    Fig. 10.  Experimental results while $z = 0$: (a) Waveform; (b) phase diagram.

    图 11  $y = 0$时的实验结果 (a)波形; (b)相图

    Fig. 11.  Experimental results while $y = 0$: (a) Waveform; (b) phase diagram.

    图 12  $x = 0$时的实验结果 (a)波形; (b)相图

    Fig. 12.  Experimental results while $x = 0$: (a) Waveform; (b) phase diagram.

    表 1  常用平面的参数值

    Table 1.  Parameter values of typical planes.

    序号${\theta _1}$/(º)${\theta _2}$/(º)AB
    10000
    204501
    30600$\sqrt 3 $
    401350–1
    545010
    6600$\sqrt 3 $0
    71350–10
    下载: 导出CSV
    Baidu
  • [1]

    刘妮, 梁九卿 2017 66 110502

    Liu N, Liang J Q 2017 Acta Phys. Sin. 66 110502

    [2]

    Bastarrachea-Magnani M A, Lopez-del-Carpio B, Lerma-Hernandez S, Hirsch J G 2015 Phys. Scr 90 068015

    [3]

    Kubin G N 1997 IEEE Workshop on Speech Coding for Telecommunications Proceedings. Back to Basics: Attacking Fundamental Problems in Speech Coding Pocono Manor, USA, Sept 7 - 10, 1997 p7

    [4]

    Jafari A, Almasganj F, Bidhendi M N 2010 Chaos 20 033106Google Scholar

    [5]

    霍铖宇, 庄建军, 黄晓林, 侯凤贞, 宁新宝 2012 61 190506

    Huo C Y, Zhuang J J, Huang X L, Hou F Z, Ning X B 2012 Acta Phys. Sin. 61 190506

    [6]

    李洪云, 岳大光, 梁志强, 伊长虹, 陈建中 2018 62 203401Google Scholar

    Li H Y, Yue D G, Liang Z Q, Yi C H, Chen J Z 2018 Acta Phys. Sin. 62 203401Google Scholar

    [7]

    Tucker W 2002 Phys. D 171 127Google Scholar

    [8]

    张波, 李忠, 毛宗源, 庞敏熙 2001 控制理论与应用 18 796Google Scholar

    Zhang B, Li Z, Mao Z Y, Pang M X 2001 Control Theory & Appl. 18 796Google Scholar

    [9]

    Golestani A, Jahed M M R, Ahmadian K, Omidvarnia A H, Mozayani N 2009 Chaos 19 013137Google Scholar

    [10]

    Wu W J, Chen Z Q, Yuan Z Z 2009 Chaos, Soliton. Fract. 41 2756Google Scholar

    [11]

    Stankevich N V, Kuznetsov A P, Popova E S, Seleznev E P 2017 Commun. Nonlinear Sci. 43 200Google Scholar

    [12]

    王琳, 彭建华, 张立静 2007 深圳大学学报(理工版) 24 290

    Wang L, Peng J H, Zhang L J 2007 J. Shenzhen U. Sci. Eng. 24 290

    [13]

    陈红, 吴玲 2013 62 020507

    Chen H, Wu L 2013 Acta Phys. Sin. 62 020507

    [14]

    Clare M J, Pieter J C, Bernd K, Hinke M O 2008 SIAM J. Appl. Dyn. Syst. 7 712

    [15]

    李正友, 李天伟, 黄谦, 郭姣 2012 应用声学 5 379Google Scholar

    Li Z Y, Li T W, Huang Q, Guo J 2012 Appl. Acoust. 5 379Google Scholar

    [16]

    Mukherjee S, Palit S K, Banerjee S, Wahab A W A, Ariffin M, Bhattacharya D K 2017 Appl. Math. Comput. 301 140

    [17]

    Michalak K 2015 Chaos, Soliton. Fract. 78 215Google Scholar

    [18]

    Babak S, Amir H J 2015 Proceeding of the IEEE 28 th Canadian Conference on Electrical and Computer Engineering Halifax, Canada, May 3−6, 2015 p581

    [19]

    Atefeh G, Ateke G 2018 Chaos, Soliton. Fract. 114 400Google Scholar

    [20]

    Carlos E C S, Daniel P B C 2019 IEEE Access 7 10523Google Scholar

    [21]

    闫登卫, 王丽丹, 段书凯 2018 67 110502Google Scholar

    Yan D W, Wang L D, Duan S K 2018 Acta Phys. Sin. 67 110502Google Scholar

    [22]

    禹思敏 2011 混沌系统与混沌电路(西安: 西安电子科技大学出版社) 第156页

    Yu S M 2011 Chaotic systems and chaotic circuits (Xi’an: Xi’an Electronic University Press) p156 (in Chinese)

    [23]

    刘兴云, 鲁池梅, 程永山 2008 计算机测量与控制 16 834

    Liu X Y, Lü C M, Cheng Y S 2008 Computer Measurement & Contrl 16 834

    [24]

    蔡娜, 井元伟, 姜囡, 张嗣瀛 2009 东北大学学报(自然科学版) 30 313

    Cai N, Jing Y W, Jiang C, Zhang S Y 2009 J. Northeast Univ. 30 313

  • [1] 王重秋, 杨建华. 非周期二进制/M进制信号激励下非线性系统的非周期共振研究.  , 2023, 72(22): 222501. doi: 10.7498/aps.72.20231154
    [2] 张绿夷, 王革丽, 谭桂容, 吴越. 基于因果检验的非线性系统的预测试验.  , 2022, 71(8): 080502. doi: 10.7498/aps.71.20211871
    [3] 潘昕浓, 王革丽, 杨培才. 利用慢特征分析法提取层次结构系统中的外强迫.  , 2017, 66(8): 080501. doi: 10.7498/aps.66.080501
    [4] 吴昊, 陈树新, 杨宾峰, 陈坤. 基于广义M估计的鲁棒容积卡尔曼滤波目标跟踪算法.  , 2015, 64(21): 218401. doi: 10.7498/aps.64.218401
    [5] 杨志安. 非线性系统的非对角Berry相.  , 2013, 62(11): 110302. doi: 10.7498/aps.62.110302
    [6] 杨芳艳, 胡明, 姚尚平. 连续时间系统同宿轨的搜索算法及其应用.  , 2013, 62(10): 100501. doi: 10.7498/aps.62.100501
    [7] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境下孤立导体表面充电时域特性研究.  , 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [8] 陈红, 吴玲. 设计和实现三维空间任意庞加莱截平面电路.  , 2013, 62(2): 020507. doi: 10.7498/aps.62.020507
    [9] 马文聪, 金宁德, 高忠科. 动力学变换法探测连续系统不稳定周期轨道.  , 2012, 61(17): 170510. doi: 10.7498/aps.61.170510
    [10] 贾蒙, 樊养余, 李慧敏. 基于自适应因子轨道延拓法的不变流形计算.  , 2010, 59(11): 7686-7692. doi: 10.7498/aps.59.7686
    [11] 周颖, 臧强. 多输入多输出不确定非线性系统的输出反馈自适应机动控制.  , 2009, 58(11): 7565-7572. doi: 10.7498/aps.58.7565
    [12] 李文林, 宋运忠. 不确定非线性系统混沌反控制.  , 2008, 57(1): 51-55. doi: 10.7498/aps.57.51
    [13] 徐 云, 张建峡, 徐 霞, 周 红. Canard轨迹原理.  , 2008, 57(7): 4029-4033. doi: 10.7498/aps.57.4029
    [14] 秦卫阳, 苏 浩, 杨永峰. 利用Duffing系统的同步识别信号中的微小差别.  , 2008, 57(5): 2704-2707. doi: 10.7498/aps.57.2704
    [15] 唐 晨, 闫海青, 张 皞, 刘 铭, 张桂敏. 任意阶隐式指数时程差分多步法及其在非线性系统中的应用.  , 2004, 53(6): 1699-1703. doi: 10.7498/aps.53.1699
    [16] 张必达, 王卫东, 宋枭禹, 俎栋林, 吕红宇, 包尚联. 磁共振现代射频脉冲理论在非均匀场成像中的应用.  , 2003, 52(5): 1143-1150. doi: 10.7498/aps.52.1143
    [17] 冷永刚, 王太勇. 二次采样用于随机共振从强噪声中提取弱信号的数值研究.  , 2003, 52(10): 2432-2437. doi: 10.7498/aps.52.2432
    [18] 唐 晨, 张 皞, 闫海青, 张桂敏. 非线性系统的任意项精细积分外插多步法及其在混沌数值分析中的应用.  , 2003, 52(5): 1091-1095. doi: 10.7498/aps.52.1091
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制.  , 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] 王震宇, 廖红印, 周世平. 直流偏置的与RLC谐振器耦合的约瑟夫森结动力学行为的数值模拟.  , 2001, 50(10): 1996-2000. doi: 10.7498/aps.50.1996
计量
  • 文章访问数:  9937
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-17
  • 修回日期:  2019-11-18
  • 刊出日期:  2020-02-20

/

返回文章
返回
Baidu
map