-
从微观角度上讲, 单个极端异常波事件可视为可积模型方程的时空局域有理函数解. 本文主要讨论了三类典型的可积谐振相互作用模型(即长波短波谐振方程, 三波谐振相互作用方程, 非线性薛定谔和麦克斯韦-布洛赫方程)的基阶Peregrine异常波解及其相关研究进展; 明确指出了这些基阶异常波解形式具有普适性, 可推广应用到多分量或更高阶的可积模型中; 借助数值模拟, 还展示了共存异常波、互补异常波、以及自感应透明Peregrine孤子等新颖动力学.
-
关键词:
- 异常波 /
- 长波短波谐振 /
- 三波谐振相互作用 /
- 麦克斯韦–布洛赫方程
From a microscopic perspective, the single extreme rogue wave event can be thought of as the spatiotemporally localized rational solutions of the underlying integrable model. A typical example is the fundamental Peregrine rogue wave, who in general entails a three-fold peak amplitude, while making its peak position arbitrary on a finite continuous-wave background. This kind of bizarre wave structure agrees well with the fleeting nature of realistic rogue waves and has been confirmed experimentally, first in nonlinear fibers, then in water wave tanks and plasmas, and recently in an irregular oceanic sea state. In this review, with a brief overview of the current state of the art of the concepts, methods, and research trends related to rogue wave events, we mainly discuss the fundamental Peregrine rogue wave solutions as well as their recent progress, intended for three typical integrable models, namely, the long-wave short-wave resonant equation, the three-wave resonant interaction equation, and the nonlinear Schrödinger and Maxwell–Bloch equation. Basically, while the first two models can describe the resonant interaction among optical waves, the latter governs the interaction between the optical waves and the resonant medium. For each integrable model, we present explicitly its Lax pair, Darboux transformation formulas, and fundamental Peregrine rogue wave solutions, in a self-consistent way. We confirm by convincing examples that these fundamental rogue wave solutions exhibit universality and can be applied to the multi-component or the higher-order versions of the current integrable models. By means of numerical simulations, we demonstrate as well several novel rogue wave dynamics such as coexisting rogue waves, complementary rogue waves, and Peregrine solitons of self-induced transparency.-
Keywords:
- rogue wave /
- long-wave short-wave resonance /
- three-wave resonant interaction /
- Maxwell–Bloch equation
[1] Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Berlin: Springer)
[2] Dysthe K, Krogstad H E, Müller P 2008 Annu. Rev. Fluid Mech. 40 287
Google Scholar
[3] Akhmediev N, Pelinovsky E 2010 Eur. Phys. J. Spec. Top. 185 1
Google Scholar
[4] Lawton G 2001 New Scientist 170 28
[5] Pisarchik A N, Jaimes-Reátegui R, Sevilla-Escoboza R, Huerta-Cuellar G, Taki M 2011 Phys. Rev. Lett. 107 274101
Google Scholar
[6] Onorato M, Resitori S, Baronio F (ed) 2016 Rogue and Shock Waves in Nonlinear Dispersive Media (Switzerland: Springer) pp179–203
[7] Wabnitz S (ed) 2017 Nonlinear Guided Wave Optics: A Testbed for Extreme Waves (Bristol: IOP Publishing) Chapt. 11
[8] Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nat. Photonics 8 755
Google Scholar
[9] Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F T 2013 Phys. Rep. 528 47
Google Scholar
[10] Moslem W M 2011 Phys. Plasmas 18 032301
Google Scholar
[11] Alam M S, Hafez M G, Talukder M R, Ali M Hossain 2017 Chin. Phys. B 26 095203
Google Scholar
[12] Tsai Y Y, Tsai J Y, Lin I 2016 Nat. Phys. 12 573
Google Scholar
[13] Bludov Yu V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610
Google Scholar
[14] Wen L, Li L, Li Z D, Song S W, Zhang X F, Liu W M 2011 Eur. Phys. J. D 64 473
Google Scholar
[15] 张解放, 戴朝卿 2016 65 050501
Google Scholar
Zhang J F, Dai C Q 2016 Acta Phys. Sin. 65 050501
Google Scholar
[16] Liu C, Yang Z Y, Zhao L C, Yang W L, Yue R H 2013 Chin. Phys. Lett. 30 040304
Google Scholar
[17] Yan Z Y 2010 Commun. Theor. Phys. 54 947
Google Scholar
[18] Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502
Google Scholar
[19] Akhmediev N, Ankiewicz A, Taki M 2009 Phys. Lett. A 373 675
Google Scholar
[20] Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054
Google Scholar
[21] Lecaplain C, Grelu Ph, Soto-Crespo J M, Akhmediev N 2012 Phys. Rev. Lett. 108 233901
Google Scholar
[22] Baronio F, Degasperis A, Conforti M, Wabnitz S 2012 Phys. Rev. Lett. 109 044102
Google Scholar
[23] Chen S, Baronio F, Soto-Crespo J M, Grelu Ph, Mihalache D 2017 J. Phys. A: Math. Theor. 50 463001
Google Scholar
[24] Qiu D, He J, Zhang Y, Porsezian K 2015 Proc. R. Soc. A 471 20150236
Google Scholar
[25] Peregrine D H 1983 J. Aust. Math. Soc. Ser. B: Appl. Math. 25 16
Google Scholar
[26] Shrira V I, Geogjaev V V 2010 J. Eng. Math. 67 11
Google Scholar
[27] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N, Dudley J M 2010 Nat. Phys. 6 790
Google Scholar
[28] Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005
Google Scholar
[29] Chabchoub A 2016 Phys. Rev. Lett. 117 144103
Google Scholar
[30] Walczak P, Randoux S, Suret P 2015 Phys. Rev. Lett. 114 143903
Google Scholar
[31] Picozzi A, Garnier J, Hansson T, Suret P, Randoux S, Millot G, Christodoulides D N 2014 Phys. Rep. 542 1
Google Scholar
[32] Soto-Crespo J M, Devine N, Akhmediev N 2016 Phys. Rev. Lett. 116 103901
Google Scholar
[33] Baronio F 2017 Opt. Lett. 42 1756
Google Scholar
[34] Baronio F, Chen S, Mihalache D 2017 Opt. Lett. 42 3514
Google Scholar
[35] Ankiewicz A, Soto-Crespo J M, Chowdhury M A, Akhmediev N 2013 J. Opt. Soc. Am. B 30 87
Google Scholar
[36] Zhang J F, Jin M Z, He J D, Lou J H, Dai C Q 2013 Chin. Phys. B 22 054208
Google Scholar
[37] Ma Z Y, Ma S H 2012 Chin. Phys. B 21 030507
Google Scholar
[38] Chen S, Soto-Crespo J M, Grelu Ph 2014 Opt. Express 22 27632
Google Scholar
[39] Guo B L, Ling L M 2011 Chin. Phys. Lett. 28 110202
Google Scholar
[40] Baronio F, Conforti M, Degasperis A, Lombardo S 2013 Phys. Rev. Lett. 111 114101
Google Scholar
[41] Grelu Ph (ed) 2016 Nonlinear Optical Cavity Dynamics: from Microresonators to Fiber Lasers (Weinheim: Wiley-VCH) pp231–316
[42] Grelu Ph, Akhmediev N 2012 Nat. Photonics 6 84
Google Scholar
[43] Chen S, Dudley J M 2009 Phys. Rev. Lett. 102 233903
Google Scholar
[44] Akhmediev N, Ankiewicz A 1997 Solitons: Nonlinear Pulses and Beams (London: Chapman and Hall)
[45] Chen S, Liu Y, Mysyrowicz A 2010 Phys. Rev. A 81 061806
Google Scholar
[46] Guo B, Ling L, Liu Q P 2012 Phys. Rev. E 85 026607
Google Scholar
[47] He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914
Google Scholar
[48] Wang D S, Zhang D J, Yang J 2010 J. Math. Phys. 51 023510
Google Scholar
[49] Wang D S, Wang X 2018 Nonlinear Anal. Real World Appl. 41 334
Google Scholar
[50] Chen S, Zhou Y, Baronio F, Mihalache D 2018 Rom. Rep. Phys. 70 102
[51] Akhmediev N, Ankiewicz A, Soto-Crespo J M 2009 Phys. Rev. E 80 026601
Google Scholar
[52] Ankiewicz A, Soto-Crespo J M, Akhmediev N 2010 Phys. Rev. E 81 046602
Google Scholar
[53] Chen S 2013 Phys. Rev. E 88 023202
Google Scholar
[54] Soto-Crespo J M, Devine N, Hoffmann N P, Akhmediev N 2014 Phys. Rev. E 90 032902
Google Scholar
[55] Chan H N, Chow K W, Kedziora D J, Grimshaw R H J, Ding E 2014 Phys. Rev. E 89 032914
Google Scholar
[56] Zhang Y, Guo L, He J, Zhou Z 2015 Lett. Math. Phys. 105 853
Google Scholar
[57] He J, Xu S, Porsezian K 2012 J. Phys. Soc. Jpn. 81 124007
Google Scholar
[58] Chen S, Song L Y 2014 Phys. Lett. A 378 1228
Google Scholar
[59] Xu S, He J, Cheng Y, Porseizan K 2015 Math. Method Appl. Sci. 38 1106
Google Scholar
[60] He J, Wang L, Li L, Porsezian K, Erdélyi R 2014 Phys. Rev. E 89 062917
Google Scholar
[61] Chen S, Soto-Crespo J M, Baronio F, Grelu Ph, Mihalache D 2016 Opt. Express 24 15251
Google Scholar
[62] Zha Q 2013 Phys. Scr. 87 065401
Google Scholar
[63] Chen S, Baronio F, Soto-Crespo J M, Liu Y, Grelu Ph 2016 Phys. Rev. E 93 062202
Google Scholar
[64] Chen S, Zhou Y, Bu L, Baronio F, Soto-Crespo J M, Mihalache D 2019 Opt. Express 27 11370
Google Scholar
[65] Ankiewicz A, Kedziora D J, Chowdury A, Bandelow U, Akhmediev N 2016 Phys. Rev. E 93 012206
Google Scholar
[66] Zhang Y, Guo L, Chabchoub A, He J 2017 Rom. J. Phys. 62 102
[67] Chen S, Mihalache D 2015 J. Phys. A: Math. Theor. 48 215202
Google Scholar
[68] Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M, Wabnitz S 2014 Phys. Rev. Lett. 113 034101
Google Scholar
[69] Li L, Malomed B A, Mihalache D, Liu W M 2006 Phys. Rew. E 73 066610
Google Scholar
[70] Chen S, Song L Y 2013 Phys. Rev. E 87 032910
Google Scholar
[71] Li Z D, Huo C Z, Li Q Y, He P B, Xu T F 2018 Chin. Phys. B 27 040505
Google Scholar
[72] Ye Y, Zhou Y, Chen S, Baronio F, Grelu Ph 2019 Proc. R. Soc. A 475 20180806
Google Scholar
[73] Ohta Y, Yang J 2012 Phys. Rev. E 86 036604
Google Scholar
[74] Ohta Y, Yang J 2013 J. Phys. A: Math. Theor. 46 105202
Google Scholar
[75] Randoux S, Suret P, El G 2016 Sci. Rep. 6 29238
Google Scholar
[76] Matveev V B, Salle M A 1991 Darboux Transformation and Solitons (Berlin: Springer)
[77] Hirota R 1973 J. Math. Phys. 14 805
Google Scholar
[78] Zhang N, Xia T C, Hu B B 2017 Commun. Theor. Phys. 68 580
Google Scholar
[79] Kang Z Z, Xia T C, Ma W X 2019 Adv. Differ. Equ. NY 2019 188
Google Scholar
[80] Kang Z Z, Xia T C, Ma W X 2019 Proc. Rom. Acad. A 20 115
[81] Baronio F, Wabnitz S, Kodama Y 2016 Phys. Rev. Lett. 116 173901
Google Scholar
[82] Baronio F, Chen S, Onorato M, Trillo S, Wabnitz S, Kodama Y 2016 Opt. Lett. 41 5571
Google Scholar
[83] Bokaeeyan M, Ankiewicz A, Akhmediev N 2019 Phys. Scr. 94 035203
Google Scholar
[84] Mihalache D 2017 Rom. Rep. Phys. 69 403
[85] Malomed B A, Mihalache D 2019 Rom. J. Phys. 64 106
[86] Frisquet B, Kibler B, Morin Ph, Baronio F, Conforti M, Millot G, Wabnitz S 2016 Sci. Rep. 6 20785
Google Scholar
[87] Baronio F, Frisquet B, Chen S. Millot G, Wabnitz S, Kibler B 2018 Phys. Rev. A 97 013852
Google Scholar
[88] Tikan A, Billet C, El G, Tovbis A, Bertola M, Sylvestre T, Gustave F, Randoux S, Genty G, Suret P, Dudley J M 2017 Phys. Rev. Lett. 119 033901
Google Scholar
[89] Liu W, Zhang Y, He J 2018 Rom. Rep. Phys. 70 106
[90] Chen S, Ye Y, Soto-Crespo J M, Grelu Ph, Baronio F 2018 Phys. Rev. Lett. 121 104101
Google Scholar
[91] Kibler B, Chabchoub A, Gelash A, Akhmediev N, Zakharov V E 2015 Phys. Rev. X 5 041026
Google Scholar
[92] Chen S, Grelu Ph, Soto-Crespo J M 2014 Phys. Rev. E 89 011201
Google Scholar
[93] Chen S, Baronio F, Soto-Crespo J M, Grelu Ph, Conforti M, Wabnitz S 2015 Phys. Rev. A 92 033847
Google Scholar
[94] He J, Xu S, Porseizan K 2012 Phys. Rev. E 86 066603
Google Scholar
[95] Chen S, Ye Y, Baronio F, Liu Y, Cai, X M, Grelu Ph 2017 Opt. Express 25 29687
Google Scholar
[96] Wang X, Li Y, Huang F, Chen Y 2015 Commun. Nonlinear Sci. Numer. Simul. 20 434
Google Scholar
[97] Degasperis A, Wabnitz S, Aceves A B 2015 Phys. Lett. A 379 1067
Google Scholar
[98] Guo L, Wang L, Cheng Y, He J 2017 Commun. Nonlinear Sci. Numer. Simul. 52 11
Google Scholar
[99] Zakharov V E 1972 Sov. Phys. JETP 35 908
[100] Benney D J 1977 Stud. Appl. Math. 56 81
Google Scholar
[101] Djordjevic V D, Redekopp L G 1977 J. Fluid Mech. 79 703
Google Scholar
[102] Chowdhury A, Tataronis J A 2008 Phys. Rev. Lett. 100 153905
Google Scholar
[103] Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503
Google Scholar
[104] Chow K W, Chan H N, Kedziora D J, Grimshaw R H J 2013 J. Phys. Soc. Jpn. 82 074001
Google Scholar
[105] Chan H N, Grimshaw R H J, Chow K W 2018 Phys. Rev. Fluids 3 124801
Google Scholar
[106] Wright III O C 2006 Stud. Appl. Math. 117 71
[107] Chen S 2014 Phys. Lett. A 378 1095
Google Scholar
[108] Baronio F, Chen S, Grelu Ph, Wabnitz S, Conforti M 2015 Phys. Rev. A 91 033804
Google Scholar
[109] Chen S, Soto-Crespo J M, Grelu Ph 2014 Phys. Rev. E 90 033203
Google Scholar
[110] Kaup D J, Reiman A, Bers A 1979 Rev. Mod. Phys. 51 275
Google Scholar
[111] Ibragimov E, Struthers A 1996 Opt. Lett. 21 1582
Google Scholar
[112] Conforti M, Baronio F, Degasperis A, Wabnitz S 2007 Opt. Express 15 12246
Google Scholar
[113] Abdolvand A, Nazarkin A, Chugreev A V, Kaminski C F, Russell P St J 2009 Phys. Rev. Lett. 103 183902
Google Scholar
[114] Picholle E, Montes C, Leycuras C, Legrand O, Botineau J 1991 Phys. Rev. Lett. 66 1454
Google Scholar
[115] Taranenko Y N, Kazovsky L G 1992 IEEE Photonics Technol. Lett. 4 494
Google Scholar
[116] Baronio F, Conforti M, Degasperis A, Wabnitz S 2008 IEEE J. Quantum Electron. 44 542
Google Scholar
[117] Picozzi A, Haelterman M 2001 Phys. Rev. Lett. 86 2010
Google Scholar
[118] Malkin V M, Shvets G, Fisch N J 1999 Phys. Rev. Lett. 82 4448
Google Scholar
[119] Buryak A V, Di Trapani P, Skryabin D V, Trillo S 2002 Phys. Rep. 370 63
Google Scholar
[120] Baronio F, Conforti M, De Angelis C, Degasperis A, Andreana M, Couderc V, Barthélémy A 2010 Phys. Rev. Lett. 104 113902
Google Scholar
[121] Degasperis A, Lombardo S 2006 Physica D 214 157
Google Scholar
[122] Chen S, Cai X M, Grelu Ph, Soto-Crespo J M, Wabnitz S, Baronio F 2016 Opt. Express 24 5886
Google Scholar
[123] Russell P St J, Culverhouse D, Farahi F 1991 IEEE J. Quantum Electron. 27 836
Google Scholar
[124] Allen L, Eberly J H 1975 Optical Resonance and Two-Level Atoms (New York: Wiley)
[125] Haus H A 1979 Rev. Mod. Phys. 51 331
Google Scholar
[126] McCall S L, Hahn E L 1967 Phys. Rev. Lett. 18 908
Google Scholar
[127] Nakazawa M, Yamada E, Kubota H 1991 Phys. Rev. A 44 5973
Google Scholar
[128] He J S, Cheng Y, Li Y S 2002 Commun. Theor. Phys. 38 493
Google Scholar
[129] Li C, He J, Porsezian K 2013 Phys. Rev. E 87 012913
Google Scholar
[130] Conforti M, Baronio F 2011 Eur. Phys. J. D 64 115
Google Scholar
[131] Wu C F, Grimshaw R H J, Chow K W, Chan H N 2015 Chaos 25 103113
Google Scholar
[132] Tsuchida T 2002 J. Phys. A: Math. Gen. 35 7827
Google Scholar
-
图 1 数值模拟验证初始白噪声微扰下的基阶RW解(5)式, (6)式和 (10)式的稳定性, 左列图对应
$(m, n) =(-1.3514, ~0.7803)$ , 中列图对应$(m, n) =(- 0.4287, ~0.6442)$ . 右列图显示这两类RW结构在同一背景场中的数值激发. 图改编自文献[109]Fig. 1. Simulations confirm the stability of the fundamental RW solutions (5), (6), and (10) against initial white noise perturbations. Left column:
$(m, n) =(-1.3514, ~0.7803)$ ; Middle column:$(m, n) =(- 0.4287, ~0.6442)$ . The right column shows the numerical excitation of such two rogue wave families from the same background field. Figure adapted from Ref. [109].图 3 NLS–MB方程的基阶RW解(23)的时空演化, 其中(a)列图对应解析解的3D曲面和轮廓图; (b)列图为数值模拟结果, 初始条件已文中给出; (c)列图显示这类异常波结构在背景场中的数值激发产生, 已黑线圈出. 图改编自文献[95]
Fig. 3. Spatiotemporal evolution of the fundamental rogue wave solutions (23) of the NLS–MB equation. Column (a): Analytical solutions, given by 3D surface and contour plots; Column (b) the numerical results, with initial conditions being specified in the text; The column (c) shows the numerical excitation of the rogue waves, indicated by the black circles, from the background field. Figure adapted from Ref. [95].
-
[1] Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Berlin: Springer)
[2] Dysthe K, Krogstad H E, Müller P 2008 Annu. Rev. Fluid Mech. 40 287
Google Scholar
[3] Akhmediev N, Pelinovsky E 2010 Eur. Phys. J. Spec. Top. 185 1
Google Scholar
[4] Lawton G 2001 New Scientist 170 28
[5] Pisarchik A N, Jaimes-Reátegui R, Sevilla-Escoboza R, Huerta-Cuellar G, Taki M 2011 Phys. Rev. Lett. 107 274101
Google Scholar
[6] Onorato M, Resitori S, Baronio F (ed) 2016 Rogue and Shock Waves in Nonlinear Dispersive Media (Switzerland: Springer) pp179–203
[7] Wabnitz S (ed) 2017 Nonlinear Guided Wave Optics: A Testbed for Extreme Waves (Bristol: IOP Publishing) Chapt. 11
[8] Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nat. Photonics 8 755
Google Scholar
[9] Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F T 2013 Phys. Rep. 528 47
Google Scholar
[10] Moslem W M 2011 Phys. Plasmas 18 032301
Google Scholar
[11] Alam M S, Hafez M G, Talukder M R, Ali M Hossain 2017 Chin. Phys. B 26 095203
Google Scholar
[12] Tsai Y Y, Tsai J Y, Lin I 2016 Nat. Phys. 12 573
Google Scholar
[13] Bludov Yu V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610
Google Scholar
[14] Wen L, Li L, Li Z D, Song S W, Zhang X F, Liu W M 2011 Eur. Phys. J. D 64 473
Google Scholar
[15] 张解放, 戴朝卿 2016 65 050501
Google Scholar
Zhang J F, Dai C Q 2016 Acta Phys. Sin. 65 050501
Google Scholar
[16] Liu C, Yang Z Y, Zhao L C, Yang W L, Yue R H 2013 Chin. Phys. Lett. 30 040304
Google Scholar
[17] Yan Z Y 2010 Commun. Theor. Phys. 54 947
Google Scholar
[18] Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502
Google Scholar
[19] Akhmediev N, Ankiewicz A, Taki M 2009 Phys. Lett. A 373 675
Google Scholar
[20] Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054
Google Scholar
[21] Lecaplain C, Grelu Ph, Soto-Crespo J M, Akhmediev N 2012 Phys. Rev. Lett. 108 233901
Google Scholar
[22] Baronio F, Degasperis A, Conforti M, Wabnitz S 2012 Phys. Rev. Lett. 109 044102
Google Scholar
[23] Chen S, Baronio F, Soto-Crespo J M, Grelu Ph, Mihalache D 2017 J. Phys. A: Math. Theor. 50 463001
Google Scholar
[24] Qiu D, He J, Zhang Y, Porsezian K 2015 Proc. R. Soc. A 471 20150236
Google Scholar
[25] Peregrine D H 1983 J. Aust. Math. Soc. Ser. B: Appl. Math. 25 16
Google Scholar
[26] Shrira V I, Geogjaev V V 2010 J. Eng. Math. 67 11
Google Scholar
[27] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N, Dudley J M 2010 Nat. Phys. 6 790
Google Scholar
[28] Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005
Google Scholar
[29] Chabchoub A 2016 Phys. Rev. Lett. 117 144103
Google Scholar
[30] Walczak P, Randoux S, Suret P 2015 Phys. Rev. Lett. 114 143903
Google Scholar
[31] Picozzi A, Garnier J, Hansson T, Suret P, Randoux S, Millot G, Christodoulides D N 2014 Phys. Rep. 542 1
Google Scholar
[32] Soto-Crespo J M, Devine N, Akhmediev N 2016 Phys. Rev. Lett. 116 103901
Google Scholar
[33] Baronio F 2017 Opt. Lett. 42 1756
Google Scholar
[34] Baronio F, Chen S, Mihalache D 2017 Opt. Lett. 42 3514
Google Scholar
[35] Ankiewicz A, Soto-Crespo J M, Chowdhury M A, Akhmediev N 2013 J. Opt. Soc. Am. B 30 87
Google Scholar
[36] Zhang J F, Jin M Z, He J D, Lou J H, Dai C Q 2013 Chin. Phys. B 22 054208
Google Scholar
[37] Ma Z Y, Ma S H 2012 Chin. Phys. B 21 030507
Google Scholar
[38] Chen S, Soto-Crespo J M, Grelu Ph 2014 Opt. Express 22 27632
Google Scholar
[39] Guo B L, Ling L M 2011 Chin. Phys. Lett. 28 110202
Google Scholar
[40] Baronio F, Conforti M, Degasperis A, Lombardo S 2013 Phys. Rev. Lett. 111 114101
Google Scholar
[41] Grelu Ph (ed) 2016 Nonlinear Optical Cavity Dynamics: from Microresonators to Fiber Lasers (Weinheim: Wiley-VCH) pp231–316
[42] Grelu Ph, Akhmediev N 2012 Nat. Photonics 6 84
Google Scholar
[43] Chen S, Dudley J M 2009 Phys. Rev. Lett. 102 233903
Google Scholar
[44] Akhmediev N, Ankiewicz A 1997 Solitons: Nonlinear Pulses and Beams (London: Chapman and Hall)
[45] Chen S, Liu Y, Mysyrowicz A 2010 Phys. Rev. A 81 061806
Google Scholar
[46] Guo B, Ling L, Liu Q P 2012 Phys. Rev. E 85 026607
Google Scholar
[47] He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914
Google Scholar
[48] Wang D S, Zhang D J, Yang J 2010 J. Math. Phys. 51 023510
Google Scholar
[49] Wang D S, Wang X 2018 Nonlinear Anal. Real World Appl. 41 334
Google Scholar
[50] Chen S, Zhou Y, Baronio F, Mihalache D 2018 Rom. Rep. Phys. 70 102
[51] Akhmediev N, Ankiewicz A, Soto-Crespo J M 2009 Phys. Rev. E 80 026601
Google Scholar
[52] Ankiewicz A, Soto-Crespo J M, Akhmediev N 2010 Phys. Rev. E 81 046602
Google Scholar
[53] Chen S 2013 Phys. Rev. E 88 023202
Google Scholar
[54] Soto-Crespo J M, Devine N, Hoffmann N P, Akhmediev N 2014 Phys. Rev. E 90 032902
Google Scholar
[55] Chan H N, Chow K W, Kedziora D J, Grimshaw R H J, Ding E 2014 Phys. Rev. E 89 032914
Google Scholar
[56] Zhang Y, Guo L, He J, Zhou Z 2015 Lett. Math. Phys. 105 853
Google Scholar
[57] He J, Xu S, Porsezian K 2012 J. Phys. Soc. Jpn. 81 124007
Google Scholar
[58] Chen S, Song L Y 2014 Phys. Lett. A 378 1228
Google Scholar
[59] Xu S, He J, Cheng Y, Porseizan K 2015 Math. Method Appl. Sci. 38 1106
Google Scholar
[60] He J, Wang L, Li L, Porsezian K, Erdélyi R 2014 Phys. Rev. E 89 062917
Google Scholar
[61] Chen S, Soto-Crespo J M, Baronio F, Grelu Ph, Mihalache D 2016 Opt. Express 24 15251
Google Scholar
[62] Zha Q 2013 Phys. Scr. 87 065401
Google Scholar
[63] Chen S, Baronio F, Soto-Crespo J M, Liu Y, Grelu Ph 2016 Phys. Rev. E 93 062202
Google Scholar
[64] Chen S, Zhou Y, Bu L, Baronio F, Soto-Crespo J M, Mihalache D 2019 Opt. Express 27 11370
Google Scholar
[65] Ankiewicz A, Kedziora D J, Chowdury A, Bandelow U, Akhmediev N 2016 Phys. Rev. E 93 012206
Google Scholar
[66] Zhang Y, Guo L, Chabchoub A, He J 2017 Rom. J. Phys. 62 102
[67] Chen S, Mihalache D 2015 J. Phys. A: Math. Theor. 48 215202
Google Scholar
[68] Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M, Wabnitz S 2014 Phys. Rev. Lett. 113 034101
Google Scholar
[69] Li L, Malomed B A, Mihalache D, Liu W M 2006 Phys. Rew. E 73 066610
Google Scholar
[70] Chen S, Song L Y 2013 Phys. Rev. E 87 032910
Google Scholar
[71] Li Z D, Huo C Z, Li Q Y, He P B, Xu T F 2018 Chin. Phys. B 27 040505
Google Scholar
[72] Ye Y, Zhou Y, Chen S, Baronio F, Grelu Ph 2019 Proc. R. Soc. A 475 20180806
Google Scholar
[73] Ohta Y, Yang J 2012 Phys. Rev. E 86 036604
Google Scholar
[74] Ohta Y, Yang J 2013 J. Phys. A: Math. Theor. 46 105202
Google Scholar
[75] Randoux S, Suret P, El G 2016 Sci. Rep. 6 29238
Google Scholar
[76] Matveev V B, Salle M A 1991 Darboux Transformation and Solitons (Berlin: Springer)
[77] Hirota R 1973 J. Math. Phys. 14 805
Google Scholar
[78] Zhang N, Xia T C, Hu B B 2017 Commun. Theor. Phys. 68 580
Google Scholar
[79] Kang Z Z, Xia T C, Ma W X 2019 Adv. Differ. Equ. NY 2019 188
Google Scholar
[80] Kang Z Z, Xia T C, Ma W X 2019 Proc. Rom. Acad. A 20 115
[81] Baronio F, Wabnitz S, Kodama Y 2016 Phys. Rev. Lett. 116 173901
Google Scholar
[82] Baronio F, Chen S, Onorato M, Trillo S, Wabnitz S, Kodama Y 2016 Opt. Lett. 41 5571
Google Scholar
[83] Bokaeeyan M, Ankiewicz A, Akhmediev N 2019 Phys. Scr. 94 035203
Google Scholar
[84] Mihalache D 2017 Rom. Rep. Phys. 69 403
[85] Malomed B A, Mihalache D 2019 Rom. J. Phys. 64 106
[86] Frisquet B, Kibler B, Morin Ph, Baronio F, Conforti M, Millot G, Wabnitz S 2016 Sci. Rep. 6 20785
Google Scholar
[87] Baronio F, Frisquet B, Chen S. Millot G, Wabnitz S, Kibler B 2018 Phys. Rev. A 97 013852
Google Scholar
[88] Tikan A, Billet C, El G, Tovbis A, Bertola M, Sylvestre T, Gustave F, Randoux S, Genty G, Suret P, Dudley J M 2017 Phys. Rev. Lett. 119 033901
Google Scholar
[89] Liu W, Zhang Y, He J 2018 Rom. Rep. Phys. 70 106
[90] Chen S, Ye Y, Soto-Crespo J M, Grelu Ph, Baronio F 2018 Phys. Rev. Lett. 121 104101
Google Scholar
[91] Kibler B, Chabchoub A, Gelash A, Akhmediev N, Zakharov V E 2015 Phys. Rev. X 5 041026
Google Scholar
[92] Chen S, Grelu Ph, Soto-Crespo J M 2014 Phys. Rev. E 89 011201
Google Scholar
[93] Chen S, Baronio F, Soto-Crespo J M, Grelu Ph, Conforti M, Wabnitz S 2015 Phys. Rev. A 92 033847
Google Scholar
[94] He J, Xu S, Porseizan K 2012 Phys. Rev. E 86 066603
Google Scholar
[95] Chen S, Ye Y, Baronio F, Liu Y, Cai, X M, Grelu Ph 2017 Opt. Express 25 29687
Google Scholar
[96] Wang X, Li Y, Huang F, Chen Y 2015 Commun. Nonlinear Sci. Numer. Simul. 20 434
Google Scholar
[97] Degasperis A, Wabnitz S, Aceves A B 2015 Phys. Lett. A 379 1067
Google Scholar
[98] Guo L, Wang L, Cheng Y, He J 2017 Commun. Nonlinear Sci. Numer. Simul. 52 11
Google Scholar
[99] Zakharov V E 1972 Sov. Phys. JETP 35 908
[100] Benney D J 1977 Stud. Appl. Math. 56 81
Google Scholar
[101] Djordjevic V D, Redekopp L G 1977 J. Fluid Mech. 79 703
Google Scholar
[102] Chowdhury A, Tataronis J A 2008 Phys. Rev. Lett. 100 153905
Google Scholar
[103] Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503
Google Scholar
[104] Chow K W, Chan H N, Kedziora D J, Grimshaw R H J 2013 J. Phys. Soc. Jpn. 82 074001
Google Scholar
[105] Chan H N, Grimshaw R H J, Chow K W 2018 Phys. Rev. Fluids 3 124801
Google Scholar
[106] Wright III O C 2006 Stud. Appl. Math. 117 71
[107] Chen S 2014 Phys. Lett. A 378 1095
Google Scholar
[108] Baronio F, Chen S, Grelu Ph, Wabnitz S, Conforti M 2015 Phys. Rev. A 91 033804
Google Scholar
[109] Chen S, Soto-Crespo J M, Grelu Ph 2014 Phys. Rev. E 90 033203
Google Scholar
[110] Kaup D J, Reiman A, Bers A 1979 Rev. Mod. Phys. 51 275
Google Scholar
[111] Ibragimov E, Struthers A 1996 Opt. Lett. 21 1582
Google Scholar
[112] Conforti M, Baronio F, Degasperis A, Wabnitz S 2007 Opt. Express 15 12246
Google Scholar
[113] Abdolvand A, Nazarkin A, Chugreev A V, Kaminski C F, Russell P St J 2009 Phys. Rev. Lett. 103 183902
Google Scholar
[114] Picholle E, Montes C, Leycuras C, Legrand O, Botineau J 1991 Phys. Rev. Lett. 66 1454
Google Scholar
[115] Taranenko Y N, Kazovsky L G 1992 IEEE Photonics Technol. Lett. 4 494
Google Scholar
[116] Baronio F, Conforti M, Degasperis A, Wabnitz S 2008 IEEE J. Quantum Electron. 44 542
Google Scholar
[117] Picozzi A, Haelterman M 2001 Phys. Rev. Lett. 86 2010
Google Scholar
[118] Malkin V M, Shvets G, Fisch N J 1999 Phys. Rev. Lett. 82 4448
Google Scholar
[119] Buryak A V, Di Trapani P, Skryabin D V, Trillo S 2002 Phys. Rep. 370 63
Google Scholar
[120] Baronio F, Conforti M, De Angelis C, Degasperis A, Andreana M, Couderc V, Barthélémy A 2010 Phys. Rev. Lett. 104 113902
Google Scholar
[121] Degasperis A, Lombardo S 2006 Physica D 214 157
Google Scholar
[122] Chen S, Cai X M, Grelu Ph, Soto-Crespo J M, Wabnitz S, Baronio F 2016 Opt. Express 24 5886
Google Scholar
[123] Russell P St J, Culverhouse D, Farahi F 1991 IEEE J. Quantum Electron. 27 836
Google Scholar
[124] Allen L, Eberly J H 1975 Optical Resonance and Two-Level Atoms (New York: Wiley)
[125] Haus H A 1979 Rev. Mod. Phys. 51 331
Google Scholar
[126] McCall S L, Hahn E L 1967 Phys. Rev. Lett. 18 908
Google Scholar
[127] Nakazawa M, Yamada E, Kubota H 1991 Phys. Rev. A 44 5973
Google Scholar
[128] He J S, Cheng Y, Li Y S 2002 Commun. Theor. Phys. 38 493
Google Scholar
[129] Li C, He J, Porsezian K 2013 Phys. Rev. E 87 012913
Google Scholar
[130] Conforti M, Baronio F 2011 Eur. Phys. J. D 64 115
Google Scholar
[131] Wu C F, Grimshaw R H J, Chow K W, Chan H N 2015 Chaos 25 103113
Google Scholar
[132] Tsuchida T 2002 J. Phys. A: Math. Gen. 35 7827
Google Scholar
计量
- 文章访问数: 9585
- PDF下载量: 197
- 被引次数: 0