搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理

杨旻昱 宋建军 张静 唐召唤 张鹤鸣 胡辉勇

引用本文:
Citation:

氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理

杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇

Physical mechanism of uniaxial strain in nano-scale metal oxide semiconductor transistor caused by sin film

Yang Min-Yu, Song Jian-Jun, Zhang Jing, Tang Zhao-Huan, Zhang He-Ming, Hu Hui-Yong
PDF
导出引用
  • 应力作用下MOS性能可显著提升, 小尺寸MOS沟道中单轴应力的引入可通过在MOS表面覆盖淀积SiN膜实现. 虽然该工艺已广泛应用于MOS性能的提升, 但有关SiN膜致MOS沟道应力的产生机理、作用机理, 以及SiN膜结构与MOS沟道应力类型关联性等方面的研究仍需深入探讨. 本文基于ISE TCAD仿真, 提出了分段分析、闭环分析和整体性分析三种模型. 通过对Si MOS源、栅、漏上多种SiN膜淀积形式的深入分析, 揭示了SiN膜致MOS 沟道应力产生与作用物理机理. 研究发现: 1) “台阶”结构是SiN膜导致MOS沟道应变的必要条件; 2) SiN膜具有收缩或者扩张的趋势, SiN膜主要通过引起MOS源/漏区域Si材料的形变, 进而引起沟道区Si材料发生形变; 3)整体SiN膜对沟道的应力等于源/漏上方SiN膜在源/漏所施加的应力、“闭环结构”对沟道内部所施加的应力以及SiN膜的完整性在沟道产生的应力的总和. 本文物理模型可为小尺寸MOS工艺制造, 以及MOS器件新型应力引入的研究提供有价值的参考.
    Performance of a nano-scale MOS (metal-oxide-semiconductor) can be significantly improved by uniaxial stress, caused by the SiN film deposited on the surface of MOS. Although this technique has been widely used in the performance improvement of CMOS and integrated circuit, the physical mechanism for instance, how is the strain in MOS channel caused by the SiN film? how about the relation between the kinds of the structure of SiN film needed to be discussed in depth. On the basis of the ISE TCAD, three typical models for stress analysis——such as the segmentation structure model, the closed-loop structure model and the integrity structure model——are proposed. And then, this paper reveals the physical mechanism about how the stress in MOS channel is caused by the SiN film and how much the magnitude of the stress in MOS channel is induced. Results shows that: 1) The “step” structure is the necessary condition for the strain in the MOS channel to be caused by the SiN film. 2) With the tendency for SiN film to shrink or expand, the film may lead to the deformation along the MOS source/drain region of the Si material, which causes the deformation of Si in the channel. 3) The whole of the channel stress in SiN film is equal to the sum of the stress in the source/drain imposed by the SiN film above the source/drain, the stress which the “closed loop structure” applies to the channel, and the stress generated in the channel by the whole SiN film. Our conclusions may provide the valuable references to the manufacture of nano-scaled MOS and the research of the novel inducing stress technique.
      通信作者: 杨旻昱, minyu_muyi@qq.com
    • 基金项目: 模拟集成电路重点实验室基金(批准号: P140c090303110c0904)和陕西省自然科学基础研究计(批准号: 2014JQ8329)资助的课题.
      Corresponding author: Yang Min-Yu, minyu_muyi@qq.com
    • Funds: Project supported by the National key Laboratory of Analog Integrated Circuitry (Grant No. P140c090303110c0904), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2014JQ8329).
    [1]

    Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 J. Comput Theor Nanos 12 1610

    [2]

    Wu W R, Liu Ch, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electr Device L 35 714

    [3]

    Liu W F, Song J J 2014 Acta Phys. Sin. 63 238501 (in Chinese) [刘伟峰, 宋建军 2014 63 238501]

    [4]

    Cai W L, Takenaka M, Takagi S 2014 J. Appl. Phys. 115 094509

    [5]

    Song J J, Yang Ch, Zhu H, Zhang H M, Xu R X, Hu H Y, Shu B 2014 Acta Phys. Sin. 63 118501 (in Chinese) [宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌 2014 63 118501]

    [6]

    EngSiew K A, Sohail I R 2013 J Comput Theor Nanos 10 1231

    [7]

    Song J J, Yang Ch, Wang G Y, Zhou Ch Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys. 51 104301

    [8]

    Song J J, Zhang H M, Hu H Y, Dian X Y, Xuan R X 2007 Chin. Phys. B 16 3827

    [9]

    Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Sci. China Phys. Mech. 55 1399

    [10]

    Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Acta Phys. Sin. 61 057304 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 61 057304]

    [11]

    Huang J, Chang Sh T, Hsieh B F, Liao M H, Wang W C, Lee C C 2010 Thin Solid Films 518 241

    [12]

    Yamashita T, Nishida Y, Okagaki T, Miyagawa Y 2008 Jpn. J. Appl. Phys. 47 2569

    [13]

    Huang, H L, Chen J K, Houng M P 2013 Solid State Electron 79 31

    [14]

    Sentaurus TCAD, G2012-06 Manual, Synopsys, Inc., Mountain View, CA, USA, 2012

  • [1]

    Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 J. Comput Theor Nanos 12 1610

    [2]

    Wu W R, Liu Ch, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electr Device L 35 714

    [3]

    Liu W F, Song J J 2014 Acta Phys. Sin. 63 238501 (in Chinese) [刘伟峰, 宋建军 2014 63 238501]

    [4]

    Cai W L, Takenaka M, Takagi S 2014 J. Appl. Phys. 115 094509

    [5]

    Song J J, Yang Ch, Zhu H, Zhang H M, Xu R X, Hu H Y, Shu B 2014 Acta Phys. Sin. 63 118501 (in Chinese) [宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌 2014 63 118501]

    [6]

    EngSiew K A, Sohail I R 2013 J Comput Theor Nanos 10 1231

    [7]

    Song J J, Yang Ch, Wang G Y, Zhou Ch Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys. 51 104301

    [8]

    Song J J, Zhang H M, Hu H Y, Dian X Y, Xuan R X 2007 Chin. Phys. B 16 3827

    [9]

    Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Sci. China Phys. Mech. 55 1399

    [10]

    Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Acta Phys. Sin. 61 057304 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 61 057304]

    [11]

    Huang J, Chang Sh T, Hsieh B F, Liao M H, Wang W C, Lee C C 2010 Thin Solid Films 518 241

    [12]

    Yamashita T, Nishida Y, Okagaki T, Miyagawa Y 2008 Jpn. J. Appl. Phys. 47 2569

    [13]

    Huang, H L, Chen J K, Houng M P 2013 Solid State Electron 79 31

    [14]

    Sentaurus TCAD, G2012-06 Manual, Synopsys, Inc., Mountain View, CA, USA, 2012

  • [1] 李春熠, 莫子夜, 鲁兴业. 铁基超导研究中的单轴应变调控方法.  , 2024, 73(19): 197103. doi: 10.7498/aps.73.20241080
    [2] 夏文飞, 陈剑锋, 龙利, 李志远. 金纳米双球系统的高灵敏光学传感与其消光系数及局域场增强之关联.  , 2021, 70(9): 097301. doi: 10.7498/aps.70.20210231
    [3] 蔡潇潇, 罗国语, 李志强, 贺言. 转角双层石墨烯在应变下的光电导率.  , 2021, 70(18): 187301. doi: 10.7498/aps.70.20210110
    [4] 吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨. 氮化铌纳米线光学特性.  , 2018, 67(24): 248501. doi: 10.7498/aps.67.20181646
    [5] 陈航宇, 宋建军, 张洁, 胡辉勇, 张鹤鸣. 小尺寸单轴应变Si PMOS沟道晶面/晶向选择实验新发现.  , 2018, 67(6): 068501. doi: 10.7498/aps.67.20172138
    [6] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变硅N沟道金属氧化物半导体场效应晶体管电容特性模型.  , 2015, 64(6): 067305. doi: 10.7498/aps.64.067305
    [7] 林圳旭, 林泽文, 张毅, 宋超, 郭艳青, 王祥, 黄新堂, 黄锐. 基于纳米硅结构的氮化硅基发光器件电致发光特性研究.  , 2014, 63(3): 037801. doi: 10.7498/aps.63.037801
    [8] 房营光. 颗粒介质尺度效应的抗剪试验及物理机理分析.  , 2014, 63(3): 034502. doi: 10.7498/aps.63.034502
    [9] 贾河顺, 罗磊, 李秉霖, 徐振华, 任现坤, 姜言森, 程亮, 张春艳. 彩色多晶硅太阳电池性能研究.  , 2013, 62(16): 168802. doi: 10.7498/aps.62.168802
    [10] 靳钊, 乔丽萍, 郭晨, 王江安, 刘策. 单轴应变Si(001)任意晶向电子电导有效质量模型.  , 2013, 62(5): 058501. doi: 10.7498/aps.62.058501
    [11] 王春华, 徐浩, 万钊, 胡燕. 基于金属氧化物半导体晶体管Colpitts混沌振荡电路及其同步研究.  , 2013, 62(20): 208401. doi: 10.7498/aps.62.208401
    [12] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型.  , 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [13] 黄锐, 王旦清, 宋捷, 丁宏林, 王祥, 郭艳青, 陈坤基, 徐骏, 李伟, 马忠元. 基于Si-rich SiNx/N-rich SiNy多层膜结构的量子点构筑及发光特性.  , 2010, 59(8): 5823-5827. doi: 10.7498/aps.59.5823
    [14] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算.  , 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [15] 邵建立, 何安民, 段素青, 王裴, 秦承森. 单轴应变驱动铁bcc—hcp相转变的微观模拟.  , 2010, 59(7): 4888-4894. doi: 10.7498/aps.59.4888
    [16] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化.  , 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [17] 黄锐, 董恒平, 王旦清, 陈坤基, 丁宏林, 徐骏, 李伟, 马忠元. 基于Si-rich SiNx/N-rich SiNy多层膜结构电致发光特性研究.  , 2009, 58(3): 2072-2076. doi: 10.7498/aps.58.2072
    [18] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质.  , 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [19] 王久敏, 陈坤基, 宋 捷, 余林蔚, 吴良才, 李 伟, 黄信凡. 氮化硅介质中双层纳米硅薄膜的两级电荷存储.  , 2006, 55(11): 6080-6084. doi: 10.7498/aps.55.6080
    [20] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究.  , 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
计量
  • 文章访问数:  5681
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-12
  • 修回日期:  2015-08-14
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map