搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机摄动强跟踪粒子滤波算法

张琪 乔玉坤 孔祥玉 司小胜

引用本文:
Citation:

随机摄动强跟踪粒子滤波算法

张琪, 乔玉坤, 孔祥玉, 司小胜

Study on stochastic perturbation strong tracking particle filter

Zhang Qi, Qiao Yu-Kun, Kong Xiang-Yu, Si Xiao-Sheng
PDF
导出引用
  • 如何解决粒子的退化问题和提高算法对突变状态的跟踪能力,是粒子滤波算法研究和应用中需要考虑的两个主要因素. 传统的再采样算法虽然可以解决退化问题,但是容易导致粒子耗尽;扩展粒子滤波算法虽然可在一定程度上解决粒子耗尽问题,但其对突变状态的跟踪能力却不近人意;强跟踪粒子滤波算法可以提高对突变状态的跟踪能力,但却未能较好地改善粒子退化问题. 针对上述问题,本文将随机摄动再采样方法引入强跟踪粒子滤波算法,提出了一种随机摄动强跟踪粒子滤波算法. 当粒子退化问题严重时,对权值最大的粒子迭加随机摄动,用摄动粒子替换退化粒子以解决粒子退化问题,同时由于摄动粒子的加入增加了粒子集的多样性,可在一定程度上缓解粒子耗尽问题,提高算法对突变状态的跟踪能力. 利用标准验证模型和分时恒定系统对所提出的算法进行了仿真验证,仿真结果证明了该算法的可行性和有效性.
    To solve the degeneracy phenomenon and to improve the ability for tracking the breaking states are two difficult problems in the application of particle filter. Sequential important re-sampling can reduce orilliminate degeneracy, but the sample impoverishment is a secondary result. Extended particle filter can also reduce the degeneracy, but it cannot track the breaking states. The ability to track the breaking states can be improved by a strong tracking particle filter, but the degeneracy phenomenon will not be well solved still. A stochastic perturbation strong tracking particle filter is proposed for solving the above problems, in which a stochastically perturbative re-sampling is introduced into a strong tracking particle filter. Thus a stochastic perturbation is added to the particle with maximal weight to form some new particles, and the degenerative particles are displaced by the new particles to solve the degeneracy phenomenon and so the sample impoverishment improves the diversity of the samples. The ability of the proposed algorithm to track breaking states is also improved, and the feasibility and validity of the proposed algorithm are demonstrated by the simulation results of the standard validation model and the system with constants in different periods of time.
    • 基金项目: 国家自然科学基金(批准号:61104223,61174030,61374120)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61104223, 61174030, 61374120).
    [1]

    Yang Z L, Wang W W, Yin Z X, Zhang J, Chen X 2007 Chin Phys. Lett. 24 1170

    [2]

    Liu W D, Ren K F, Meunier-Guttin-Cluzel S, Gouesbet G 2003 Chin Phys. 12 1366

    [3]

    Gring A, Ristic B, Mihaylova L 2012 IEEE Transactions on Signal Processing 60 2138

    [4]

    Ghirmai T, Bugallo M F, Joaquín Míguez, Djurić P M 2005 IEEE Transaction on Signal Processing 53 2855

    [5]

    Cheng Chang, Rashid Ansari 2005 IEEE Signal Processing Letters 12 242

    [6]

    Jie Yu 2012 Journal of Process Control. 22 778

    [7]

    Djurić P M, Kotecha J H, Zhang J Q, Huang Y F, Ghirmai T, Bugallo M F, Joaquin Miguez 2003 IEEE Signal Processing Magazine. 20 19

    [8]

    Ning X L, Wang H L, Zhang Q, Chen L H 2010 Acta Phys. Sin. 59 4426 (in Chinese) [宁小磊, 王宏力, 张琪, 陈连华 2010 59 4426]

    [9]

    Hou J, Jing Z R, Yang Y 2013 Journal of Electronics m& Information Technology 35 1532 (in Chinese)[侯静, 景占荣, 羊彦 2013 电子与信息学报 35 1532]

    [10]

    De Freitas 2000 Neural Computation. 12 955

    [11]

    Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, Eric Wan 2000 Technical Report CUED/F-INFENG/TR 380

    [12]

    Hu C H, Zhang Q, Qiao Y K 2008 Acta Automatic Sinica 12 1522 (in Chinese)[胡昌华, 张琪, 乔玉坤 2008 自动化学报 12 1522]

    [13]

    Zhou D H, Ye Y Z 2000 Modern Fault Diagnosis and Fault Tolerant Control (Beijing: Tsinghua university press), p265-267 (in Chinese) [周东华, 叶银忠 2000 现代故障诊断与容错控制(北京: 清华大学出版社) 第265-267页]

    [14]

    Sanjeev Arulampalam, Simon Maskell, Neil Gordon 2002 IEEE Transaction on Signal Processing 50 174

    [15]

    Mo Y W, Xiao D Y 2005 Control Theory & Application 22 269 (in Chinese) [莫以为, 萧德云 2005 控制理论与应用 22 269]

  • [1]

    Yang Z L, Wang W W, Yin Z X, Zhang J, Chen X 2007 Chin Phys. Lett. 24 1170

    [2]

    Liu W D, Ren K F, Meunier-Guttin-Cluzel S, Gouesbet G 2003 Chin Phys. 12 1366

    [3]

    Gring A, Ristic B, Mihaylova L 2012 IEEE Transactions on Signal Processing 60 2138

    [4]

    Ghirmai T, Bugallo M F, Joaquín Míguez, Djurić P M 2005 IEEE Transaction on Signal Processing 53 2855

    [5]

    Cheng Chang, Rashid Ansari 2005 IEEE Signal Processing Letters 12 242

    [6]

    Jie Yu 2012 Journal of Process Control. 22 778

    [7]

    Djurić P M, Kotecha J H, Zhang J Q, Huang Y F, Ghirmai T, Bugallo M F, Joaquin Miguez 2003 IEEE Signal Processing Magazine. 20 19

    [8]

    Ning X L, Wang H L, Zhang Q, Chen L H 2010 Acta Phys. Sin. 59 4426 (in Chinese) [宁小磊, 王宏力, 张琪, 陈连华 2010 59 4426]

    [9]

    Hou J, Jing Z R, Yang Y 2013 Journal of Electronics m& Information Technology 35 1532 (in Chinese)[侯静, 景占荣, 羊彦 2013 电子与信息学报 35 1532]

    [10]

    De Freitas 2000 Neural Computation. 12 955

    [11]

    Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, Eric Wan 2000 Technical Report CUED/F-INFENG/TR 380

    [12]

    Hu C H, Zhang Q, Qiao Y K 2008 Acta Automatic Sinica 12 1522 (in Chinese)[胡昌华, 张琪, 乔玉坤 2008 自动化学报 12 1522]

    [13]

    Zhou D H, Ye Y Z 2000 Modern Fault Diagnosis and Fault Tolerant Control (Beijing: Tsinghua university press), p265-267 (in Chinese) [周东华, 叶银忠 2000 现代故障诊断与容错控制(北京: 清华大学出版社) 第265-267页]

    [14]

    Sanjeev Arulampalam, Simon Maskell, Neil Gordon 2002 IEEE Transaction on Signal Processing 50 174

    [15]

    Mo Y W, Xiao D Y 2005 Control Theory & Application 22 269 (in Chinese) [莫以为, 萧德云 2005 控制理论与应用 22 269]

  • [1] 唐佳瑶, 罗一涵, 谢宗良, 夏诗烨, 刘雅卿, 徐少雄, 马浩统, 曹雷. 基于中频域维纳滤波的非视域成像算法研究.  , 2023, 72(1): 014210. doi: 10.7498/aps.72.20221600
    [2] 刘杰, 张建勋, 代煜. 基于多引导滤波的图像增强算法.  , 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
    [3] 郭力仁, 胡以华, 董骁, 李敏乐. 运动目标激光微多普勒效应平动补偿和微动参数估计.  , 2018, 67(15): 150701. doi: 10.7498/aps.67.20172754
    [4] 陈志敏, 田梦楚, 吴盘龙, 薄煜明, 顾福飞, 岳聪. 基于蝙蝠算法的粒子滤波法研究.  , 2017, 66(5): 050502. doi: 10.7498/aps.66.050502
    [5] 杨伟明, 赵美蓉. 自调整平滑区间粒子滤波平滑算法.  , 2016, 65(4): 040502. doi: 10.7498/aps.65.040502
    [6] 李鑫楠, 黄贺艳, 贾小宁, 马驷良. 基于指导滤波的图像盲复原算法.  , 2015, 64(13): 134202. doi: 10.7498/aps.64.134202
    [7] 吴昊, 陈树新, 杨宾峰, 陈坤. 基于广义M估计的鲁棒容积卡尔曼滤波目标跟踪算法.  , 2015, 64(21): 218401. doi: 10.7498/aps.64.218401
    [8] 逯志宇, 王大鸣, 王建辉, 王跃. 基于时频差的正交容积卡尔曼滤波跟踪算法.  , 2015, 64(15): 150502. doi: 10.7498/aps.64.150502
    [9] 李雄杰, 周东华. 一种基于强跟踪滤波的混沌保密通信方法.  , 2015, 64(14): 140501. doi: 10.7498/aps.64.140501
    [10] 张涛, 陈万忠, 李明阳. 基于AdaBoost算法的癫痫脑电信号识别.  , 2015, 64(12): 128701. doi: 10.7498/aps.64.128701
    [11] 姚振宁, 刘大明, 刘胜道, 朱兴乐. 基于不敏粒子滤波的水中非合作磁性目标实时磁定位方法.  , 2014, 63(22): 227502. doi: 10.7498/aps.63.227502
    [12] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性.  , 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [13] 张淑宁, 赵惠昌, 熊刚, 郭长勇. 基于粒子滤波的单通道正弦调频混合信号分离与参数估计.  , 2014, 63(15): 158401. doi: 10.7498/aps.63.158401
    [14] 盛峥, 陈加清, 徐如海. 利用粒子滤波从雷达回波实时跟踪反演大气波导.  , 2012, 61(6): 069301. doi: 10.7498/aps.61.069301
    [15] 冷洪泽, 宋君强, 曹小群, 杨锦辉. 基于粒子滤波的一种改进的资料同化方法.  , 2012, 61(7): 070501. doi: 10.7498/aps.61.070501
    [16] 朱志宇, 杨官校. 基于Stiefel流形的粒子滤波器研究.  , 2010, 59(12): 8316-8321. doi: 10.7498/aps.59.8316
    [17] 宁小磊, 王宏力, 张琪, 陈连华. 区间衍生粒子滤波器.  , 2010, 59(7): 4426-4433. doi: 10.7498/aps.59.4426
    [18] 杜正聪, 唐 斌, 李 可. 混合退火粒子滤波器.  , 2006, 55(3): 999-1004. doi: 10.7498/aps.55.999
    [19] 张彬, 吕百达. 含空间滤波器的激光放大系统的逆问题.  , 1998, 47(1): 1-8. doi: 10.7498/aps.47.1
    [20] 范海福, 千金子. 直接法中相位退化问题的处理.  , 1981, 30(5): 594-601. doi: 10.7498/aps.30.594
计量
  • 文章访问数:  6099
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-22
  • 修回日期:  2014-03-12
  • 刊出日期:  2014-06-05

/

返回文章
返回
Baidu
map