搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

添加Ti对Al-Bi难混溶合金组织和性能的影响

满田囡 张林 项兆龙 王文斌 高建文 王恩刚

引用本文:
Citation:

添加Ti对Al-Bi难混溶合金组织和性能的影响

满田囡, 张林, 项兆龙, 王文斌, 高建文, 王恩刚

Effects of adding Ti on microstructure and properties of Al-Bi immiscible alloy

Man Tian-Nan, Zhang Lin, Xiang Zhao-Long, Wang Wen-Bin, Gao Jian-Wen, Wang En-Gang
PDF
导出引用
  • 难混溶合金在凝固过程中极易发生液-液相分离,造成第二相的宏观偏析,失去了合金的应用价值.本文将第三组元Ti添加到Al-Bi难混溶合金中,研究了Ti的添加对合金的凝固组织和性能的影响,探索了原位生成的金属间化合物的存在形式,分析了第二相Bi颗粒的分布.研究结果表明,凝固过程中原位生成的长针状Al3Ti化合物,均匀分布在Al基体中,穿插在Bi相颗粒之间,阻碍了Bi相颗粒的沉降及凝并,防止了Bi相颗粒的碰撞及长大,制备了Bi相弥散分布在Al基体中的难混溶合金;同时弥散分布在基体中的硬质相Al3Ti还增强了基体的强度,提高了合金的硬度,使合金表现出优异的耐磨性能.
    Immiscible alloy, as a kind of special metallurgy characteristic alloy, has been investigated for decades. The fabrication of immiscible alloy with a homogeneous microstructure remains a challenge due to the liquid-liquid phase separation. The microstructure and the properties of Al-Bi immiscible alloy with an addition of Ti are investigated, and the effect of adding Ti on mechanical behavior for self-lubricating performance is measured. The pure Al and Ti are first melted in graphite crucible under argon gas protection. An appropriate amount of Bi is added into the melt. After melting and homogenizing the immiscible alloy, the melt is maintained at 1150 ℃ for 10 min, and then it is quenched. The scanning electron microscope analysis results show that the addition of Ti leads to a significant reduction of Bi-rich droplet size and an increase of particle number. The Bi-rich droplets of the ternary Al-Bi-Ti alloy are more homogeneously distributed throughout the Al matrix than the microstructure of binary Al-Bi alloy. The results from X-ray diffraction and energy disspersive spectrometer indicate that Al3Ti compounds, which are the transformation products between Al and Ti elements, disperse in the Al matrix. The needle-like Al3Ti compounds suspend in Al-Bi melt and impede the Bi phase in the liquid miscibility gap from being segregated. This is conducible to refining the microstructure of Al-Bi alloy. The Al3Ti compounds form before the initial nucleation of the Bi phase in the Al matrix, and impede the Bi phase from being segregated. Al-Bi immiscible alloy is effectively fabricated with dispersed fine second phase droplets by the addition of Ti. For the Al-Bi alloy, the coarse and non-uniform distribution of Bi-rich droplets can be easily broken. The improvement in the wear resistance of Al-Bi immiscible alloy by adding Ti can be attributed not only to the dispersion and size of the Bi soft phase but also to the in-situ formation of Al3Ti compounds. The addition of Ti is effective for refining the microstructure and improving the wear properties, which simultaneously improves the practical applications of self-lubrication bearing material with low coefficient of friction i.e., reducing the energy loss.
      Corresponding author: Zhang Lin, zhanglin@epm.neu.edu.cn;egwang@mail.neu.edu.cn ; Wang En-Gang, zhanglin@epm.neu.edu.cn;egwang@mail.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51674083, 50901019) and the Programme of Introducing Talents of Discipline to Universities (the 111Project of China) (Grant No. B07015).
    [1]

    Inoue A, Yano N J 1987 Mater. Sci. 22 123

    [2]

    Heaby R B, Cahn J W 1973 J. Chem. Phys. 58 896

    [3]

    Oriani R A 1956 J. Chem. Phys. 25 186

    [4]

    He J, Mattern N, Tan J, Zhao J Z, Kaban I, Wang Z, Ratke L, Kim D H, Kim W T, Eckert J 2013 Acta Mater. 61 2102

    [5]

    Nagy O Z, Kaptay G 2012 Intermetallics 26

    [6]

    Kaban I, Hoyer W 2008 Mater. Sci. Eng. A 495 3

    [7]

    Schaffer P L, Mathiesen R H, Arnberg L 2009 Acta Mater. 57 2887

    [8]

    Zheng T X, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Debray F, Beaugnon E, Fautrelle Y 2015 J. Alloys Compd. 623 36

    [9]

    Majumdar B, Chattopadhyay K 2000 Metall. Mater. Trans. A 31 1833

    [10]

    Wu M H, Ludwig A, Ratke L 2003 Model. Simul. Mater. Sci. Eng. 11 755

    [11]

    Zhang L, Wang E G, Zuo X W, He J C 2008 Acta Metall. Sin. 44 165 (in Chinese) [张林, 王恩刚, 左小伟, 赫冀成 2008 金属学报 44 165]

    [12]

    Guo J J, Liu Y, Jia J, Su Y Q, Ding H S, Zhao J Z, Xue X 2001 Scr. Mater. 45 1197

    [13]

    Zhao J Z, He J, Hu Z Q, Ratke L 2004 Z. Metallkd. 95 326

    [14]

    Jiang H X, He J, Zhao J Z 2015 Sci. Rep. 5 12680

    [15]

    Yasuda H, Ohnaka I, Fujimoto S, Takezawa N, Tsuchiyama A, Nakano T, Uesugi K 2006 Scr. Mater. 54 527

    [16]

    Zha M, Li Y J, Mathiesen R H, Roven H J 2014 J. Alloys Compd. 605 131

    [17]

    Lu W Q, Zhang S G, Li J G 2013 Mater. Lett. 107 340

    [18]

    Sun Q, Jiang H X, Zhao J Z, He J 2017 Acta Mater. 129 321

    [19]

    Chen L Y, Xu J Q, Li X C 2014 Nat. Commun. 5 3879

    [20]

    Cao C Z, Chen L Y, Xu J Q, Zhao J Z, Pozuelo M, Li X C 2016 Mater. Lett. 174 213

    [21]

    Wang T M, Fu H W, Chen Z N, Xu J, Zhu J, Cao F, Li T J 2012 J. Alloys Compd. 511 45

    [22]

    Wang T M, Chen Z N, Fu H W, Xu J, Fu Y, Li T J 2011 Scr. Mater. 64 1121

    [23]

    Zhang K, Bian X, Li Y, Yang C, Yang H, Zhang Y 2015 J. Alloys Compd. 639 563

    [24]

    Murray J L 1988 Metall. Trans. A 19 243

    [25]

    Man T N, Zhang L, Xu N K, Wang W B, Xiang Z L, Wang E G 2016 Metals 6 177

    [26]

    Chen Z G, Zhu X R, Tang X L, Kong D J, Wang L 2007 Acta Phys. Sin. 56 7320 (in Chinese) [陈志刚, 朱小蓉, 汤小丽, 孔德军, 王玲 2007 56 7320]

    [27]

    Guo Z, Sha W 2002 Mater. Trans. 43 1273

    [28]

    Ratke L, Diefenbach S 1995 Mater. Sci. Eng.: R: Rep. 15 263

  • [1]

    Inoue A, Yano N J 1987 Mater. Sci. 22 123

    [2]

    Heaby R B, Cahn J W 1973 J. Chem. Phys. 58 896

    [3]

    Oriani R A 1956 J. Chem. Phys. 25 186

    [4]

    He J, Mattern N, Tan J, Zhao J Z, Kaban I, Wang Z, Ratke L, Kim D H, Kim W T, Eckert J 2013 Acta Mater. 61 2102

    [5]

    Nagy O Z, Kaptay G 2012 Intermetallics 26

    [6]

    Kaban I, Hoyer W 2008 Mater. Sci. Eng. A 495 3

    [7]

    Schaffer P L, Mathiesen R H, Arnberg L 2009 Acta Mater. 57 2887

    [8]

    Zheng T X, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Debray F, Beaugnon E, Fautrelle Y 2015 J. Alloys Compd. 623 36

    [9]

    Majumdar B, Chattopadhyay K 2000 Metall. Mater. Trans. A 31 1833

    [10]

    Wu M H, Ludwig A, Ratke L 2003 Model. Simul. Mater. Sci. Eng. 11 755

    [11]

    Zhang L, Wang E G, Zuo X W, He J C 2008 Acta Metall. Sin. 44 165 (in Chinese) [张林, 王恩刚, 左小伟, 赫冀成 2008 金属学报 44 165]

    [12]

    Guo J J, Liu Y, Jia J, Su Y Q, Ding H S, Zhao J Z, Xue X 2001 Scr. Mater. 45 1197

    [13]

    Zhao J Z, He J, Hu Z Q, Ratke L 2004 Z. Metallkd. 95 326

    [14]

    Jiang H X, He J, Zhao J Z 2015 Sci. Rep. 5 12680

    [15]

    Yasuda H, Ohnaka I, Fujimoto S, Takezawa N, Tsuchiyama A, Nakano T, Uesugi K 2006 Scr. Mater. 54 527

    [16]

    Zha M, Li Y J, Mathiesen R H, Roven H J 2014 J. Alloys Compd. 605 131

    [17]

    Lu W Q, Zhang S G, Li J G 2013 Mater. Lett. 107 340

    [18]

    Sun Q, Jiang H X, Zhao J Z, He J 2017 Acta Mater. 129 321

    [19]

    Chen L Y, Xu J Q, Li X C 2014 Nat. Commun. 5 3879

    [20]

    Cao C Z, Chen L Y, Xu J Q, Zhao J Z, Pozuelo M, Li X C 2016 Mater. Lett. 174 213

    [21]

    Wang T M, Fu H W, Chen Z N, Xu J, Zhu J, Cao F, Li T J 2012 J. Alloys Compd. 511 45

    [22]

    Wang T M, Chen Z N, Fu H W, Xu J, Fu Y, Li T J 2011 Scr. Mater. 64 1121

    [23]

    Zhang K, Bian X, Li Y, Yang C, Yang H, Zhang Y 2015 J. Alloys Compd. 639 563

    [24]

    Murray J L 1988 Metall. Trans. A 19 243

    [25]

    Man T N, Zhang L, Xu N K, Wang W B, Xiang Z L, Wang E G 2016 Metals 6 177

    [26]

    Chen Z G, Zhu X R, Tang X L, Kong D J, Wang L 2007 Acta Phys. Sin. 56 7320 (in Chinese) [陈志刚, 朱小蓉, 汤小丽, 孔德军, 王玲 2007 56 7320]

    [27]

    Guo Z, Sha W 2002 Mater. Trans. 43 1273

    [28]

    Ratke L, Diefenbach S 1995 Mater. Sci. Eng.: R: Rep. 15 263

  • [1] 戚忠乙, 王博, 江鸿翔, 张丽丽, 何杰. 微量稀土La对Al-7%Si-0.6%Fe合金组织与性能的影响.  , 2024, 73(7): 076401. doi: 10.7498/aps.73.20231939
    [2] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测.  , 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [3] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算.  , 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [4] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究.  , 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [5] 陶强, 马帅领, 崔田, 朱品文. 过渡金属硼化物的结构与性质.  , 2017, 66(3): 036103. doi: 10.7498/aps.66.036103
    [6] 王理林, 王志军, 林鑫, 王锦程, 黄卫东. 冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响.  , 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [7] 赵宁, 钟毅, 黄明亮, 马海涛, 刘小平. 热迁移对Cu/Sn/Cu焊点液-固界面Cu6Sn5生长动力学的影响.  , 2015, 64(16): 166601. doi: 10.7498/aps.64.166601
    [8] 杨庆龄, 陈奕仪, 吴幸, 沈国瑞, 孙立涛. Cu/Al引线键合界面金属间化合物生长过程的原位实验研究.  , 2015, 64(21): 216804. doi: 10.7498/aps.64.216804
    [9] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响.  , 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [10] 杨能武, 彭文屹, 严明明, 王维维, 石海平. 时效时间对FeNiAlTa形状记忆合金组织结构和性能的影响.  , 2013, 62(15): 158106. doi: 10.7498/aps.62.158106
    [11] 郑晖, 申亮, 白彬, 孙博. NiAl化合物表面成分的准标度关系与偏离放大效应.  , 2012, 61(1): 016104. doi: 10.7498/aps.61.016104
    [12] 何智兵, 阳志林, 闫建成, 宋之敏, 卢铁城. 辉光放电聚合物结构及力学性质研究.  , 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [13] 黄锋, 邸洪双, 王广山. 用元胞自动机方法模拟镁合金薄带双辊铸轧过程凝固组织.  , 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313
    [14] 张 敏, 林国强, 董 闯, 闻立时. 脉冲偏压电弧离子镀TiO2薄膜的力学与光学性能.  , 2007, 56(12): 7300-7308. doi: 10.7498/aps.56.7300
    [15] 杨海波, 胡 明, 张 伟, 张绪瑞, 李德军, 王明霞. 基于纳米压痕法的多孔硅硬度及杨氏模量与微观结构关系研究.  , 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [16] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果.  , 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [17] 韩 逸, 班春燕, 巴启先, 王书晗, 崔建忠. 磁场对液态铝和固态铁界面微观组织的影响.  , 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
    [18] 同育全, 申宝成, 甘玉生, 闫志杰. 铸锭凝固组织对相应非晶合金晶化过程中二十面体准晶相形成动力学的影响.  , 2005, 54(10): 4556-4561. doi: 10.7498/aps.54.4556
    [19] 许北雪, 吴锦雷, 侯士敏, 张西尧, 刘惟敏, 薛增泉, 吴全德. 镧与真空沉积银纳米粒子的金属间化合.  , 2002, 51(7): 1649-1653. doi: 10.7498/aps.51.1649
    [20] 张鹏, 杜云慧, 曾大本. 电磁-机械复合场对合金凝固组织影响的研究.  , 2002, 51(3): 696-699. doi: 10.7498/aps.51.696
计量
  • 文章访问数:  6737
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-18
  • 修回日期:  2017-11-07
  • 刊出日期:  2018-02-05

/

返回文章
返回
Baidu
map