-
难混溶合金在凝固过程中极易发生液-液相分离,造成第二相的宏观偏析,失去了合金的应用价值.本文将第三组元Ti添加到Al-Bi难混溶合金中,研究了Ti的添加对合金的凝固组织和性能的影响,探索了原位生成的金属间化合物的存在形式,分析了第二相Bi颗粒的分布.研究结果表明,凝固过程中原位生成的长针状Al3Ti化合物,均匀分布在Al基体中,穿插在Bi相颗粒之间,阻碍了Bi相颗粒的沉降及凝并,防止了Bi相颗粒的碰撞及长大,制备了Bi相弥散分布在Al基体中的难混溶合金;同时弥散分布在基体中的硬质相Al3Ti还增强了基体的强度,提高了合金的硬度,使合金表现出优异的耐磨性能.Immiscible alloy, as a kind of special metallurgy characteristic alloy, has been investigated for decades. The fabrication of immiscible alloy with a homogeneous microstructure remains a challenge due to the liquid-liquid phase separation. The microstructure and the properties of Al-Bi immiscible alloy with an addition of Ti are investigated, and the effect of adding Ti on mechanical behavior for self-lubricating performance is measured. The pure Al and Ti are first melted in graphite crucible under argon gas protection. An appropriate amount of Bi is added into the melt. After melting and homogenizing the immiscible alloy, the melt is maintained at 1150 ℃ for 10 min, and then it is quenched. The scanning electron microscope analysis results show that the addition of Ti leads to a significant reduction of Bi-rich droplet size and an increase of particle number. The Bi-rich droplets of the ternary Al-Bi-Ti alloy are more homogeneously distributed throughout the Al matrix than the microstructure of binary Al-Bi alloy. The results from X-ray diffraction and energy disspersive spectrometer indicate that Al3Ti compounds, which are the transformation products between Al and Ti elements, disperse in the Al matrix. The needle-like Al3Ti compounds suspend in Al-Bi melt and impede the Bi phase in the liquid miscibility gap from being segregated. This is conducible to refining the microstructure of Al-Bi alloy. The Al3Ti compounds form before the initial nucleation of the Bi phase in the Al matrix, and impede the Bi phase from being segregated. Al-Bi immiscible alloy is effectively fabricated with dispersed fine second phase droplets by the addition of Ti. For the Al-Bi alloy, the coarse and non-uniform distribution of Bi-rich droplets can be easily broken. The improvement in the wear resistance of Al-Bi immiscible alloy by adding Ti can be attributed not only to the dispersion and size of the Bi soft phase but also to the in-situ formation of Al3Ti compounds. The addition of Ti is effective for refining the microstructure and improving the wear properties, which simultaneously improves the practical applications of self-lubrication bearing material with low coefficient of friction i.e., reducing the energy loss.
-
Keywords:
- immiscible alloys /
- intermetallic compounds /
- microsturcture /
- hardness
[1] Inoue A, Yano N J 1987 Mater. Sci. 22 123
[2] Heaby R B, Cahn J W 1973 J. Chem. Phys. 58 896
[3] Oriani R A 1956 J. Chem. Phys. 25 186
[4] He J, Mattern N, Tan J, Zhao J Z, Kaban I, Wang Z, Ratke L, Kim D H, Kim W T, Eckert J 2013 Acta Mater. 61 2102
[5] Nagy O Z, Kaptay G 2012 Intermetallics 26
[6] Kaban I, Hoyer W 2008 Mater. Sci. Eng. A 495 3
[7] Schaffer P L, Mathiesen R H, Arnberg L 2009 Acta Mater. 57 2887
[8] Zheng T X, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Debray F, Beaugnon E, Fautrelle Y 2015 J. Alloys Compd. 623 36
[9] Majumdar B, Chattopadhyay K 2000 Metall. Mater. Trans. A 31 1833
[10] Wu M H, Ludwig A, Ratke L 2003 Model. Simul. Mater. Sci. Eng. 11 755
[11] Zhang L, Wang E G, Zuo X W, He J C 2008 Acta Metall. Sin. 44 165 (in Chinese) [张林, 王恩刚, 左小伟, 赫冀成 2008 金属学报 44 165]
[12] Guo J J, Liu Y, Jia J, Su Y Q, Ding H S, Zhao J Z, Xue X 2001 Scr. Mater. 45 1197
[13] Zhao J Z, He J, Hu Z Q, Ratke L 2004 Z. Metallkd. 95 326
[14] Jiang H X, He J, Zhao J Z 2015 Sci. Rep. 5 12680
[15] Yasuda H, Ohnaka I, Fujimoto S, Takezawa N, Tsuchiyama A, Nakano T, Uesugi K 2006 Scr. Mater. 54 527
[16] Zha M, Li Y J, Mathiesen R H, Roven H J 2014 J. Alloys Compd. 605 131
[17] Lu W Q, Zhang S G, Li J G 2013 Mater. Lett. 107 340
[18] Sun Q, Jiang H X, Zhao J Z, He J 2017 Acta Mater. 129 321
[19] Chen L Y, Xu J Q, Li X C 2014 Nat. Commun. 5 3879
[20] Cao C Z, Chen L Y, Xu J Q, Zhao J Z, Pozuelo M, Li X C 2016 Mater. Lett. 174 213
[21] Wang T M, Fu H W, Chen Z N, Xu J, Zhu J, Cao F, Li T J 2012 J. Alloys Compd. 511 45
[22] Wang T M, Chen Z N, Fu H W, Xu J, Fu Y, Li T J 2011 Scr. Mater. 64 1121
[23] Zhang K, Bian X, Li Y, Yang C, Yang H, Zhang Y 2015 J. Alloys Compd. 639 563
[24] Murray J L 1988 Metall. Trans. A 19 243
[25] Man T N, Zhang L, Xu N K, Wang W B, Xiang Z L, Wang E G 2016 Metals 6 177
[26] Chen Z G, Zhu X R, Tang X L, Kong D J, Wang L 2007 Acta Phys. Sin. 56 7320 (in Chinese) [陈志刚, 朱小蓉, 汤小丽, 孔德军, 王玲 2007 56 7320]
[27] Guo Z, Sha W 2002 Mater. Trans. 43 1273
[28] Ratke L, Diefenbach S 1995 Mater. Sci. Eng.: R: Rep. 15 263
-
[1] Inoue A, Yano N J 1987 Mater. Sci. 22 123
[2] Heaby R B, Cahn J W 1973 J. Chem. Phys. 58 896
[3] Oriani R A 1956 J. Chem. Phys. 25 186
[4] He J, Mattern N, Tan J, Zhao J Z, Kaban I, Wang Z, Ratke L, Kim D H, Kim W T, Eckert J 2013 Acta Mater. 61 2102
[5] Nagy O Z, Kaptay G 2012 Intermetallics 26
[6] Kaban I, Hoyer W 2008 Mater. Sci. Eng. A 495 3
[7] Schaffer P L, Mathiesen R H, Arnberg L 2009 Acta Mater. 57 2887
[8] Zheng T X, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Debray F, Beaugnon E, Fautrelle Y 2015 J. Alloys Compd. 623 36
[9] Majumdar B, Chattopadhyay K 2000 Metall. Mater. Trans. A 31 1833
[10] Wu M H, Ludwig A, Ratke L 2003 Model. Simul. Mater. Sci. Eng. 11 755
[11] Zhang L, Wang E G, Zuo X W, He J C 2008 Acta Metall. Sin. 44 165 (in Chinese) [张林, 王恩刚, 左小伟, 赫冀成 2008 金属学报 44 165]
[12] Guo J J, Liu Y, Jia J, Su Y Q, Ding H S, Zhao J Z, Xue X 2001 Scr. Mater. 45 1197
[13] Zhao J Z, He J, Hu Z Q, Ratke L 2004 Z. Metallkd. 95 326
[14] Jiang H X, He J, Zhao J Z 2015 Sci. Rep. 5 12680
[15] Yasuda H, Ohnaka I, Fujimoto S, Takezawa N, Tsuchiyama A, Nakano T, Uesugi K 2006 Scr. Mater. 54 527
[16] Zha M, Li Y J, Mathiesen R H, Roven H J 2014 J. Alloys Compd. 605 131
[17] Lu W Q, Zhang S G, Li J G 2013 Mater. Lett. 107 340
[18] Sun Q, Jiang H X, Zhao J Z, He J 2017 Acta Mater. 129 321
[19] Chen L Y, Xu J Q, Li X C 2014 Nat. Commun. 5 3879
[20] Cao C Z, Chen L Y, Xu J Q, Zhao J Z, Pozuelo M, Li X C 2016 Mater. Lett. 174 213
[21] Wang T M, Fu H W, Chen Z N, Xu J, Zhu J, Cao F, Li T J 2012 J. Alloys Compd. 511 45
[22] Wang T M, Chen Z N, Fu H W, Xu J, Fu Y, Li T J 2011 Scr. Mater. 64 1121
[23] Zhang K, Bian X, Li Y, Yang C, Yang H, Zhang Y 2015 J. Alloys Compd. 639 563
[24] Murray J L 1988 Metall. Trans. A 19 243
[25] Man T N, Zhang L, Xu N K, Wang W B, Xiang Z L, Wang E G 2016 Metals 6 177
[26] Chen Z G, Zhu X R, Tang X L, Kong D J, Wang L 2007 Acta Phys. Sin. 56 7320 (in Chinese) [陈志刚, 朱小蓉, 汤小丽, 孔德军, 王玲 2007 56 7320]
[27] Guo Z, Sha W 2002 Mater. Trans. 43 1273
[28] Ratke L, Diefenbach S 1995 Mater. Sci. Eng.: R: Rep. 15 263
计量
- 文章访问数: 6737
- PDF下载量: 164
- 被引次数: 0