-
本文以 Fe59.5Ni28Al11.5Ta1 形状记忆合金为研究对象, 采用金相显微镜、X 射线衍射仪、扫描电镜、能谱仪和压力试验机等研究了轧制后不同时 效时间处理对该合金组织结构和性能的影响. 结果表明, 随着时效的进行, γ’ 相和 β’ 相的相继析出, 强化了奥氏体基体. 综合伪弹性曲线看出, 随着时效时间的增加, 600 ℃时效态合金的应力诱发马氏体临界应力先减小后增大, 合金的抗压强度、可恢复的应变和硬度都先增大后减小, 合金的残余应变则先减小后增大, 时效时间为 60 h 时, 合金的抗压强度最大, 到达1306 MPa, 此时合金的可恢复形变最大, 达到14.9%, 合金的硬度也最大, 合金的残余应变相对最小. 但随着时效时间的延长, 合金的最大应变逐渐减小, 合金塑性逐渐减小. Fe59.5Ni28Al11.5Ta1 形状记忆合金的性能与沉淀相的颗粒大小、分布、体积分数等因素有关.
-
关键词:
- Fe59.5Ni28Al11.5Ta1 /
- 时效处理 /
- 伪弹性 /
- 硬度
This paper focuses on the Fe59.5Ni28Al11.5Ta1 memory alloy, in which the effects of different aging treatments on microstructure and properties of the rolled alloy are investigated by metallurgical microscope, X-ray diffraction, SEM, EDS and pressure test machine. Results show that, because of aging treatment, precipitation of γ’ and β’ phase strengthens the austenitic matrix. With the increase of aging time at 600 ℃, the comprehensive analysis of pseudoelasticity curve, shows that the stress-induced martensite critical stress of the aging state of the alloy decreases first and then increases; the alloy compressive strength, the recoverable strain and the hardness increase first and then decrease, Besides, the alloy residual strain is first decreased and then increased. When the aging time is 60 h, the alloy compressive strength is the maximum, up to 1306 MPa, the alloy recoverable deformation is the maximum, reaching 14.9%, the hardness of the alloy is also the largest, but the alloy residual strain is relative minimum. With the increase of aging time, alloy maximum strain decreases gradually, and the plasticity of the alloy also decreases gradually. The properties of the shape memory alloy are influenced by the particle size, its distribution, volume fraction, of precipitate phase etc.-
Keywords:
- Fe59.5Ni28Al11.5Ta1 /
- aging treatment /
- pseudoelasticity /
- hardness
[1] Fu Y, Du H, Huang W, Zhang S, Hu M 2004 Sens. Actuators A 112 395
[2] Maki T, In: Otsuka K, Wayman CM 1998 Shape memory materials (Cambridge: Cambridge University Press) p117
[3] Xu Z Y 1980 Martensitic Transformation and Martensite (Beijing: Science Press) p442 (in Chinese) [徐祖耀 1980 马氏体相变与马氏体 (北京: 科学出版社) 第442页]
[4] Li G, Lv Z C 2009 Acta Phys. Sin. 58 2746 (in Chinese) [李广, 吕兆承 2009 58 2746]
[5] Zhou Y, Wang H B, Wang G P 2011 Acta Phys. Sin. 60 107501 (in Chinese) [周英, 王海波, 王古平 2011 60 107501]
[6] Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin. 55 2877 (in Chinese) [宫长伟, 王佚农, 杨大智 2006 55 2877]
[7] Fang D N, Lu W, Yan W Y 1998 Acta Mater. 47 269
[8] Hao S, Takayama T, Ishida K, Nishizawa T 1984 Metall. Trans. A 15 1819
[9] Maki T, Kobayashi K, Minato M, Tamura I 1984 Scripta Metall. 18 1105
[10] Tanaka Y, Himuro Y, Kainuma R, Sutou Y, Omori T, Ishida K 2010 Science 327 1488
[11] Dong Z Z, Liu W X, Chen J M 2002 Mater. Sci. Forum 2 407
[12] Lu J, Luo F H 2010 Rare Met. Mater. Eng. 39 1989 (in Chinese) [卢静, 罗丰华 2010 稀有金属材料与工程 39 1989]
[13] Li N 2002 J. Funct. Mater. 33 621 (in Chinese) [李宁 2002 功能材料 33 621]
[14] Horton J A, Liu C T, George E P 1995 Mater. Sci. Eng. A 192 873
[15] Wu G H, Dai X F, Liu H Y 2006 Acta. Phys. Sin. 55 2534 (in Chinese) [吴光恒, 代学芳, 刘何燕 2006 55 2534]
[16] Kainuma R, Imano S, Ohtani H 1996 Intermetallics 4 37
[17] Huang B Y 2008 Solid Phase Transformations in Alloys (Changsha: Central South University Press) p302 (in Chinese) [黄伯云 2008 合金固态相变 (长沙: 中南大学出版社) 第302页]
-
[1] Fu Y, Du H, Huang W, Zhang S, Hu M 2004 Sens. Actuators A 112 395
[2] Maki T, In: Otsuka K, Wayman CM 1998 Shape memory materials (Cambridge: Cambridge University Press) p117
[3] Xu Z Y 1980 Martensitic Transformation and Martensite (Beijing: Science Press) p442 (in Chinese) [徐祖耀 1980 马氏体相变与马氏体 (北京: 科学出版社) 第442页]
[4] Li G, Lv Z C 2009 Acta Phys. Sin. 58 2746 (in Chinese) [李广, 吕兆承 2009 58 2746]
[5] Zhou Y, Wang H B, Wang G P 2011 Acta Phys. Sin. 60 107501 (in Chinese) [周英, 王海波, 王古平 2011 60 107501]
[6] Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin. 55 2877 (in Chinese) [宫长伟, 王佚农, 杨大智 2006 55 2877]
[7] Fang D N, Lu W, Yan W Y 1998 Acta Mater. 47 269
[8] Hao S, Takayama T, Ishida K, Nishizawa T 1984 Metall. Trans. A 15 1819
[9] Maki T, Kobayashi K, Minato M, Tamura I 1984 Scripta Metall. 18 1105
[10] Tanaka Y, Himuro Y, Kainuma R, Sutou Y, Omori T, Ishida K 2010 Science 327 1488
[11] Dong Z Z, Liu W X, Chen J M 2002 Mater. Sci. Forum 2 407
[12] Lu J, Luo F H 2010 Rare Met. Mater. Eng. 39 1989 (in Chinese) [卢静, 罗丰华 2010 稀有金属材料与工程 39 1989]
[13] Li N 2002 J. Funct. Mater. 33 621 (in Chinese) [李宁 2002 功能材料 33 621]
[14] Horton J A, Liu C T, George E P 1995 Mater. Sci. Eng. A 192 873
[15] Wu G H, Dai X F, Liu H Y 2006 Acta. Phys. Sin. 55 2534 (in Chinese) [吴光恒, 代学芳, 刘何燕 2006 55 2534]
[16] Kainuma R, Imano S, Ohtani H 1996 Intermetallics 4 37
[17] Huang B Y 2008 Solid Phase Transformations in Alloys (Changsha: Central South University Press) p302 (in Chinese) [黄伯云 2008 合金固态相变 (长沙: 中南大学出版社) 第302页]
计量
- 文章访问数: 5793
- PDF下载量: 540
- 被引次数: 0