搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙离子调控微丝切割蛋白中A6亚基解折叠的单分子力谱研究

李鹏飞 曹毅 秦猛 王炜

引用本文:
Citation:

钙离子调控微丝切割蛋白中A6亚基解折叠的单分子力谱研究

李鹏飞, 曹毅, 秦猛, 王炜

Single molecule force spectroscopy study of calcium regulated mechanical unfolding of the A6 domain of adseverin

Li Peng-Fei, Cao Yi, Qin Meng, Wang Wei
PDF
导出引用
  • 在生命活动中,金属离子扮演了非常重要的角色.微丝切割蛋白(adseverin)需要钙离子的活化才能行使其切割肌动蛋白微丝的功能.本文通过基于原子力显微镜的单分子力谱研究了微丝切割蛋白C端末的A6亚基在结合钙离子前后的力学解折叠机理.实验结果显示:在未结合钙离子时,A6的解折叠表现为两态过程;在结合钙离子后A6力学稳定性显著提高;同时,钙离子的结合使得A6解折叠过程中出现稳定的中间态.通过对中间态的链长的分析,我们推测了中间态对应着A6的N端部分解折叠.而这一部分的解折叠可以使得掩藏在该结构后的A5亚基中肌动蛋白微丝结合位点暴露,从而促使微丝切割蛋白执行功能.我们的实验结果为理解微丝切割蛋白的工作原理提供了新的实验证据.
    Adseverin is a member of calcium-regulated gelsolin superfamily existing in secretory cells,which functions as an actin severing and capping protein.Adseverin is comprised of six independently folded domains (A1-A6),sharing high sequence identity (60%) with that of gelsolin (G1-G6).Calcium binding can convert both adserverin and gelsolin from a globular structure into a necklace structure and expose the actin binding sites.However,compared with gelsolin, adseverin lacks a C-terminal extension.Our previous single molecule force spectroscopy studies indicated that the Cterminal helix is critical to the force regulated calcium activation of gelsolin.It remains largely unexplored how the calcium binding to adseverin is regulated by force. Here,using atomic force microscopy based single molecule force spectroscopy,we demonstrate that the mechanical unfolding of the sixth domain of adseverin (A6) can be significantly affected by calcium binding.In order to identify the unfolding events of A6 unambiguously,we construct a hetero-polyprotein (GB1-A6)4,in which A6 is spliced alternatively with well-characterized protein domain GB1.Therefore,in the force-extension traces,GB1 unfolding events can serve as a fingerprint to identify the unfolding signature of A6. In the absence of calcium,the unfolding traces for (GB1-A6)4 show two distinct categories of events.The higher force events with unfolding forces of ~180 pN and contour length increments of ~ 18 nm correspond to the unfolding of GB1.The other category of events with lower unfolding forces of ~ 25 pN and contour length increments of ~35 nm are attributed to the mechanical unfolding of A6.The unfolding force for A6 is similar to that for the structural homological protein,G6. However,in the presence of calcium ion,the unfolding force of A6 is dramatically increased to ~45 pN,indicating that the structure of A6 can be mechanically stabilized by calcium ion-binding.Moreover,we observe a clear mechanical unfolding intermediate state for the unfolding of calcium bound A6(holo A6).Upon stretching,holo A6 is first partially unfolded to an intermediate state with a contour length increment of ~7.2 nm.Then,the intermediate state is unfolded to release a contour length of ~27.8 nm.The total contour length change is the same as that for the calcium free A6 (apo A6).Because each amino acid in the unfolded structure corresponds to a contour length increment of 0.365 nm,according to the contour length change,we infer that in the unfolding intermediate state of A6,its N-terminal regions is partially unfolded.This leads to the exposure of the cryptic actin binding site on A5,which is otherwise buried in the folded structure of A6.The force regulated activation mechanism for A6 is similar to that for G6,except that they use different sequences from those in the force-sensitive region.In G6 the C-terminal helix serves as the force-responsive tail to regulate actin binding,while in A6 the N-terminal sequences are unstructured upon stretching to promote the actin binding for adseverin. Therefore,we infer that force may be an important regulator for the actin-binding of all members in the gelsolin family proteins,including adseverin and gelsolin.Our study represents an important step towards the understanding of the function of adseverin at a molecular level.
      通信作者: 秦猛, qinmeng@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21522402,11674153,11374148,11334004)和国家重点基础研究发展计划(批准号:2013CB834100)资助的课题.
      Corresponding author: Qin Meng, qinmeng@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21522402, 11674153, 11374148, 11334004) and the National Basic Research Program of China (Grant No. 2013CB834100).
    [1]

    Lee J, Pena M M, Nose Y, Thiele D J 2002 J. Biol. Chem. 277 4380

    [2]

    Nag S, Larsson M, Robinson R C, Burtnick L D 2013 Cytoskeleton 70 360

    [3]

    Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin H L, Hayoz D 2004 Cell Mol. Life Sci. 61 2614

    [4]

    Chumnarnsilpa S, Lee W L, Nag S, Kannan B, Larsson M, Burtnick L D, Robinson R C 2009 Proc. Natl. Acad. Sci. USA 106 13719

    [5]

    L C, Gao X, Li W, Xue B, Qin M, Burtnick L D, Zhou H, Cao Y, Robinson R C, Wang W 2014 Nat. Commun. 5 4623

    [6]

    Qian H, Chen H, Yan J 2016 Acta Phys. Sin. 65 188706 (in Chinese)[钱辉, 陈虎, 严洁 2016 65 188706]

    [7]

    Zhang W K, Wang C, Zhang X 2003 Chin. Sci. Bull. 48 7 (in Chinese)[张文科, 王驰, 张希 2003 科学通报 48 7]

    [8]

    Cui S X 2016 Acta Polymerica Sinica 2016(9) 1160

    [9]

    Feng W, Wang Z, Zhang W 2017 Langmuir 33 1826

    [10]

    Zhang X, Zhang W K, Li H B, Shen J C 2000 Prog. Nat. Sci:Nat. Key Lab. Newsletter 10 385 (in Chinese)[张希, 张文科, 李宏斌, 沈家骢 2000 自然科学进展:国家重点实验室通讯 10 385]

    [11]

    Pang X C, Cheng B, Cui S X 2016 Chinese Journal of Polymer Science 34 578

    [12]

    Yu X T, Yang Z B, Wang X Y, Tang M J, Wang Z Z, Wang H B 2016 Prog. Biochem. Biophys. 43 28 (in Chinese)[于小婷, 杨忠波, 王鑫艳, 汤明杰, 王占忠, 王化斌 2016 生物化学与生物物理进展 43 28]

    [13]

    Xue Y, Li X, Li H, Zhang W 2014 Nat. Commun. 5 4348

    [14]

    Cheng B, Cui S X 2015 Polymer Mechanochemistry 369 97

    [15]

    Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H 2017 Angew. Chem. Int. Ed. Engl. 56 5490

    [16]

    Gao X, Qin M, Yin P, Liang J, Wang J, Cao Y, Wang W 2012 Biophys. J. 102 2149

    [17]

    Feng W, Wang Z, Zhang W 2017 Langmuir 33 1826

    [18]

    Luo Z, Cheng B, Cui S 2015 Langmuir 31 6107

    [19]

    Yang Z J, Yuan G H, Zhai W L, Yan J, Chen H 2016 Science China-Physics Mechanics Astronomy 59 680013

    [20]

    Schoeler C, Malinowska K H, Bernardi R C, Milles L F, Jobst M A, Durner E, Ott W, Fried D B, Bayer E A, Schulten K, Gaub H E, Nash M A 2014 Nat. Commun. 5 5635

    [21]

    Pfreundschuh M, Alsteens D, Wieneke R, Zhang C, Coughlin S R, Tampe R, Kobilka B K, Muller D J 2015 Nat. Commun. 6 8857

    [22]

    Dudko O K, Hummer G, Szabo A 2006 Phys. Rev. Lett. 96 108101

    [23]

    Dudko O K, Hummer G, Szabo A 2008 Proc. Natl. Acad. Sci. USA 105 15755

    [24]

    Bell G I 1978 Science 200 618

    [25]

    Rodriguez Del Castillo A, Lemaire S, Tchakarov L, Jeyapragasan M, Doucet J P, Vitale M L, Trifaro J M 1990 EMBO J. 9 43

    [26]

    Maekawa S, Sakai H 1990 J. Biol. Chem. 265 10940

    [27]

    Marcu M G, Zhang L, Elzagallaai A, Trifaro J M 1998 J. Biol. Chem. 273 3661

    [28]

    Cao Y, Lam C, Wang M, Li H 2006 Angew Chem. Int. Ed. Engl. 45 642

    [29]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

  • [1]

    Lee J, Pena M M, Nose Y, Thiele D J 2002 J. Biol. Chem. 277 4380

    [2]

    Nag S, Larsson M, Robinson R C, Burtnick L D 2013 Cytoskeleton 70 360

    [3]

    Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin H L, Hayoz D 2004 Cell Mol. Life Sci. 61 2614

    [4]

    Chumnarnsilpa S, Lee W L, Nag S, Kannan B, Larsson M, Burtnick L D, Robinson R C 2009 Proc. Natl. Acad. Sci. USA 106 13719

    [5]

    L C, Gao X, Li W, Xue B, Qin M, Burtnick L D, Zhou H, Cao Y, Robinson R C, Wang W 2014 Nat. Commun. 5 4623

    [6]

    Qian H, Chen H, Yan J 2016 Acta Phys. Sin. 65 188706 (in Chinese)[钱辉, 陈虎, 严洁 2016 65 188706]

    [7]

    Zhang W K, Wang C, Zhang X 2003 Chin. Sci. Bull. 48 7 (in Chinese)[张文科, 王驰, 张希 2003 科学通报 48 7]

    [8]

    Cui S X 2016 Acta Polymerica Sinica 2016(9) 1160

    [9]

    Feng W, Wang Z, Zhang W 2017 Langmuir 33 1826

    [10]

    Zhang X, Zhang W K, Li H B, Shen J C 2000 Prog. Nat. Sci:Nat. Key Lab. Newsletter 10 385 (in Chinese)[张希, 张文科, 李宏斌, 沈家骢 2000 自然科学进展:国家重点实验室通讯 10 385]

    [11]

    Pang X C, Cheng B, Cui S X 2016 Chinese Journal of Polymer Science 34 578

    [12]

    Yu X T, Yang Z B, Wang X Y, Tang M J, Wang Z Z, Wang H B 2016 Prog. Biochem. Biophys. 43 28 (in Chinese)[于小婷, 杨忠波, 王鑫艳, 汤明杰, 王占忠, 王化斌 2016 生物化学与生物物理进展 43 28]

    [13]

    Xue Y, Li X, Li H, Zhang W 2014 Nat. Commun. 5 4348

    [14]

    Cheng B, Cui S X 2015 Polymer Mechanochemistry 369 97

    [15]

    Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H 2017 Angew. Chem. Int. Ed. Engl. 56 5490

    [16]

    Gao X, Qin M, Yin P, Liang J, Wang J, Cao Y, Wang W 2012 Biophys. J. 102 2149

    [17]

    Feng W, Wang Z, Zhang W 2017 Langmuir 33 1826

    [18]

    Luo Z, Cheng B, Cui S 2015 Langmuir 31 6107

    [19]

    Yang Z J, Yuan G H, Zhai W L, Yan J, Chen H 2016 Science China-Physics Mechanics Astronomy 59 680013

    [20]

    Schoeler C, Malinowska K H, Bernardi R C, Milles L F, Jobst M A, Durner E, Ott W, Fried D B, Bayer E A, Schulten K, Gaub H E, Nash M A 2014 Nat. Commun. 5 5635

    [21]

    Pfreundschuh M, Alsteens D, Wieneke R, Zhang C, Coughlin S R, Tampe R, Kobilka B K, Muller D J 2015 Nat. Commun. 6 8857

    [22]

    Dudko O K, Hummer G, Szabo A 2006 Phys. Rev. Lett. 96 108101

    [23]

    Dudko O K, Hummer G, Szabo A 2008 Proc. Natl. Acad. Sci. USA 105 15755

    [24]

    Bell G I 1978 Science 200 618

    [25]

    Rodriguez Del Castillo A, Lemaire S, Tchakarov L, Jeyapragasan M, Doucet J P, Vitale M L, Trifaro J M 1990 EMBO J. 9 43

    [26]

    Maekawa S, Sakai H 1990 J. Biol. Chem. 265 10940

    [27]

    Marcu M G, Zhang L, Elzagallaai A, Trifaro J M 1998 J. Biol. Chem. 273 3661

    [28]

    Cao Y, Lam C, Wang M, Li H 2006 Angew Chem. Int. Ed. Engl. 45 642

    [29]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

  • [1] 陈光临, 张志勇. 使用中间层受监督的自编码器探索蛋白质的构象空间.  , 2023, 72(24): 248705. doi: 10.7498/aps.72.20231060
    [2] 张宇航, 薛振勇, 孙皓, 张珠伟, 陈虎. 酰基辅酶A结合蛋白去折叠动力学的单分子磁镊研究.  , 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [3] 俞奕飞, 曹毅. 从蘸笔纳米刻印术到力化学打印.  , 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [4] 巩龙延, 杨慧, 赵生妹. 中间测量对受驱单量子比特统计复杂度的影响.  , 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 沈环, 胡春龙, 邓绪兰. 超短脉冲激光场中间二氯苯的激发态动力学.  , 2017, 66(15): 157801. doi: 10.7498/aps.66.157801
    [7] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱.  , 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [8] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频.  , 2012, 61(11): 114213. doi: 10.7498/aps.61.114213
    [9] 蒋泽南, 房超, 孙立风. 朗之万方程及其在蛋白质折叠动力学中的应用.  , 2011, 60(6): 060502. doi: 10.7498/aps.60.060502
    [10] 杨飞, 荣命哲, 吴翊, 史强, 刘增超, 马瑞光, 陈胜. 考虑栅片烧蚀金属蒸气的栅片切割空气电弧仿真与实验研究.  , 2011, 60(5): 055208. doi: 10.7498/aps.60.055208
    [11] 周前红, 郭文康, 李辉. 保护气对切割弧特性影响的模拟研究.  , 2011, 60(2): 025214. doi: 10.7498/aps.60.025214
    [12] 徐志君, 施建青, 林国成. 轴对称谐振势阱中玻色凝聚气体基态和单涡旋态解.  , 2007, 56(2): 666-672. doi: 10.7498/aps.56.666
    [13] 胡 易. 一般切割面的铋硅族氧化物光折变增益特性及动态光栅优化.  , 2005, 54(11): 5428-5434. doi: 10.7498/aps.54.5428
    [14] 高垣梅, 刘思敏, 郭 儒, 黄春福, 汪大云. Y向切割掺杂铌酸锂晶体中的光耦合.  , 2004, 53(9): 2958-2963. doi: 10.7498/aps.53.2958
    [15] 高垣梅, 刘思敏, 赵红娥, 黄春福, 郭 儒, 汪大云. c向切割掺杂LiNbO3晶体中的光耦合.  , 2003, 52(5): 1162-1167. doi: 10.7498/aps.52.1162
    [16] 李飞飞, 许京军, 刘思敏, 乔海军, 张光寅. c向切割LiNbO3∶Fe晶体中光折变光散射.  , 2001, 50(12): 2341-2344. doi: 10.7498/aps.50.2341
    [17] 许京军, 张光寅, 刘思敏, 门丽秋. c向切割LiNbO3:Fe晶体薄片中的四波混频各向异性光散射.  , 1994, 43(12): 2059-2064. doi: 10.7498/aps.43.2059
    [18] 向天翔. 分子聚合物中间态耦合振动预离解理论.  , 1990, 39(3): 359-366. doi: 10.7498/aps.39.359
    [19] 王民, 房昌水. ADTGSP晶体热释电探测器的最佳切割方向.  , 1987, 36(1): 125-129. doi: 10.7498/aps.36.125
    [20] 周月华, 翁培焜, 郑林生. 中间成象式β谱仪.  , 1961, 17(6): 255-262. doi: 10.7498/aps.17.255
计量
  • 文章访问数:  6039
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-06-30
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map