搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递

梁锋 胡义华 陈丽 王小涓

引用本文:
Citation:

荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递

梁锋, 胡义华, 陈丽, 王小涓

Energy transfer between WO42- groups and Eu3+ in CaWO4:Eu3+ phosphor

Liang Feng, Hu Yi-Hua, Chen Li, Wang Xiao-Juan
PDF
导出引用
  • 通过高温固相法分别制备了CaWO4和CaWO4:1%Eu3+ 样品. 测量了样品不同温度(10–300 K)的荧光光谱、荧光衰减曲线和 时间分辨荧光光谱. 样品的荧光光谱表明: 在240 nm紫外光激发下, 两个样品在430 nm处都展现出来源于WO42-的蓝色发射; 样品CaWO4:Eu3+的Eu3+(5D0→7F1, 2, 3,4)的特征发射则归属于WO42-到Eu3+ 间的能量传递.由样品室温(300K)荧光衰减曲线发现: 纯CaWO4的荧光寿命为8.85μs,Eu3+掺杂之后WO42-的荧光寿命缩短至6.27μs,这从另一方面证明了WO42-与Eu3+间能量传递的存在. 由荧光寿命得到T=300K时, CaWO4: 1%Eu3+中WO42-与Eu3+间的能量传递效率(ηET)为29.2%, 能量传递速率(ωET)为4.65×104 s-1.通过时间分辨荧光光谱, 获得了从WO42-到Eu3+之间的能量传递的时间演变过程,当温度由10 K增加到300 K时, 能量传递出现的时间单调变小. 测试了不同温度(10–300 K)对CaWO4:Eu3+的荧光寿命的影响, 发现在10–50K时,Eu3+的荧光寿命增加, 但温度超过50K时发生猝灭, 荧光寿命开始下降; WO42-的荧光寿命则是随着温度的升高逐渐缩短.
    The pure CaWO4 and 1%Eu3+ doped CaWO4 phosphors are successfully prepared by the conventional solid state reaction method. The photoluminescence (PL) spectra, decay cures, and time-resolved PL spectra are measured at depend on different temperatures. Fluorescence spectra at room temperature (300 K) and low temperature (10 K) show that these two samples each have a broad band at about 430 nm, originating from the WO42- groups under 240 nm excitation, while the CaWO4:Eu3+sample exhibits the characteristic emission of Eu3+ corresponding to 5D0→7F1, 2, 3,4 transitions due to the absorbed energy transfer from WO42- groups to Eu3+ ions. And the red light at 616 nm of CaWO4: Eu3+ can be excited efficiently by UV (395 nm) and blue (465 nm) light. The decay curves at 300 K illustrate that the lifetime of WO42- group in pure CaWO4 is about 8.85 s but is shortened to 6.27 μs after Eu3+ions have been doped, which is a further good evidence for demonstrating the existence of WO42-–Eu3+ energy transfer process. The energy transfer efficiency (ηET)) and rate (ωET) between WO42- and Eu3+in CaWO4: 1%Eu3+ are 29.2% and 4:65×104 s-1 respectively, when T = 300 K. The energy transfer process is studied in detail by the time-resolved PL spectra, and the lifetime for the appearance of Eu3+ emission in CaWO4 decreases monotonically as temperature increases from 10 K to 300 K. The temperature dependence of luminescence decay time is performed and the results indicated that the lifetime of Eu3+ increases in a temperature range of 10-50 K, when the temperature is more than 50 K, thermal quenching of Eu3+ begins and the lifetime is shortened. However, the lifetime of WO42- reduces constantly with the increase of temperature.
    • 基金项目: 国家自然科学基金(批准号:21271049)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21271049).
    [1]

    Su Q, Wu H, Pan Y X, Xu J, Guo C F, Zhang X M, Zhang J H, Wang J, Zhang M 2005 J. Rare Earth Soc. 5 513 (in Chinese) [苏锵, 吴昊, 潘跃晓, 徐剑, 郭崇峰, 张新民, 张剑辉, 王静, 张梅 2005 中国稀土学报 5 513]

    [2]

    Cao R P, Peng M Y, Qiu J R 2012 Opt. Express 20 977

    [3]

    Ju G F, Hu Y H, Wu H Y, Yang Z F, Fu C J, Mu Z F, Kang F W 2011 Opt. Mater. 33 1297

    [4]

    Guo C F, Xu Y, L F, Ding X 2010 J. Alloy. Compd. 497 21

    [5]

    Mu Z F, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Xie W, Fu C J, Liao C X 2011 Acta Phys. Sin. 60 013201 (in Chinese) [牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴 2011 60 013201]

    [6]

    Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805

    [7]

    Mu Z F, Hu Y H, Chen L, Wang X J 2011 J. Lumin. 131 1687

    [8]

    Kang F W, Hu Y H, Wu H Y, Ju G F, Mu Z F, Li N N 2011 J. Rare Earths 29 837

    [9]

    Zhang J H, Zhu D Q, Wang J X 2012 Semicond. Optoelectron. 33 667 (in Chinese) [张锦华, 朱大庆, 王加贤 2012 半导体光电 33 667]

    [10]

    Li Y Q, Steen J, Krevel J, Botty G, Delsing A, DiSalvo F, With G, Hintzen H 2006 J. Alloy. Compd. 417 273

    [11]

    Yang J J, Wang T, Chen D C, Chen G D, Liu Q L 2012 Mater. Sci. Eng. B 177 1596

    [12]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y, Mu Z F 2013 J. Lumin. 135 113

    [13]

    Spassky D, Mikhailin V, Nazarov M, Ahmad-Fauzi M, Zhbanov A 2012 J. Lumin. 132 2753

    [14]

    Wang W X, Pang P P, Cheng Z Y, Hou Z Y, Li C X, Lin 2011 ACS Appl. Mater. Inter. 3 3921

    [15]

    Treadaway M J, Powell R C 1974 J. Chem. Phys. 61 4003

    [16]

    Kang F W, Hu Y H, Wu H Y, Ju G F 2011 Chin. Phys. Lett. 28 107201

    [17]

    Zorenko Y, Pashkovsky M, Voloshinovskii A, Kuklinski B 2006 J. Lumin. 116 43

    [18]

    Wu H Y, Hu Y H, Kang F W, Li N N, Ju G F, Mu Z F, Yang Z F 2012 J. Am. Ceram. Soc. 95 3214

    [19]

    Wu H Y, Hu Y H, Kang F W, Chen L, Wang X J, Ju G F, Mu Z F 2011 Mater. Res. Bull. 46 2489

    [20]

    Jin Y H, Hu Y H, Chen L, Wang X J, Mu Z F, Wu H Y, Ju G F 2013 Radiat. Meas. 51-52 18

    [21]

    Yang P P, Quan Z W, Li C X, Lian H Z, Huang S S, Lin J 2008 Micropor. Mesop. Mat. 116 524

    [22]

    Gao Y, L Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 078802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 61 078802]

    [23]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 61 107804]

    [24]

    Liu Z W, Liu Y L, Yuan D S, Zhang J X, Rong J H, Huang L H 2004 J. Inorg. Chem. 20 1433 (in Chinese) [刘正伟, 刘应亮, 袁定胜, 张静娴, 容建华, 黄浪欢 2004 无机化学学报 20 1433]

    [25]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2012 Appl. Phys. B 107 833

    [26]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2013 Mater. Sci. Eng. B 178 477

    [27]

    Kang F W, Hu Y H, Wu H Y, Mu Z F, Ju G F, Fu C J, Li N N 2012 J. Lumin. 132 887

    [28]

    Wu H Y, Hu Y H, Kang F W, Li N N 2012 J. Mater. Res. 27 959

    [29]

    Shi S K, Gao J, Zhou 2008 Opt. Mater. 30 1616

    [30]

    Peterson R G, Richard C. 1978 J. Lumin. 16 285

    [31]

    Shannon R D 1976 Acta Crystallogr A 32 751

    [32]

    Nazarov M V, Tsukerblat B S, Popovici E J, Jeon D Y J 2004 Phys. Lett. A 330 291

    [33]

    Blasse G 1973 Chem. Phys. Lett. 20 573

    [34]

    Hebbink G A, Grave L, Woldering L A, Reinhoudt D N, van Veggel F C M J 2003 J. Phys. Chem. 107 2483

    [35]

    Vergeer P, Vlugt T J H, Kox M H F, Den Hertog M I, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119

    [36]

    Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids 64 841

    [37]

    Balaji S, Mandal A K, Annapurna K 2012 Opt. Mater. 34 1930

    [38]

    Treadaway M J, Powell R C 1975 Phys. Rev. B 11 862

    [39]

    Peng H S, Song H W, Chen B J, Wang J W, Lu S Z 2003 J. Chem. Phys. 118 3277

    [40]

    Song H W, Yu L X, Lu S Z, Wang T, Liu Z X 2004 Appl. Phys. Lett. 85 470

    [41]

    Riwotzki K, Haase M 2001 J. Phys. Chem. 105 12709

  • [1]

    Su Q, Wu H, Pan Y X, Xu J, Guo C F, Zhang X M, Zhang J H, Wang J, Zhang M 2005 J. Rare Earth Soc. 5 513 (in Chinese) [苏锵, 吴昊, 潘跃晓, 徐剑, 郭崇峰, 张新民, 张剑辉, 王静, 张梅 2005 中国稀土学报 5 513]

    [2]

    Cao R P, Peng M Y, Qiu J R 2012 Opt. Express 20 977

    [3]

    Ju G F, Hu Y H, Wu H Y, Yang Z F, Fu C J, Mu Z F, Kang F W 2011 Opt. Mater. 33 1297

    [4]

    Guo C F, Xu Y, L F, Ding X 2010 J. Alloy. Compd. 497 21

    [5]

    Mu Z F, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Xie W, Fu C J, Liao C X 2011 Acta Phys. Sin. 60 013201 (in Chinese) [牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴 2011 60 013201]

    [6]

    Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805

    [7]

    Mu Z F, Hu Y H, Chen L, Wang X J 2011 J. Lumin. 131 1687

    [8]

    Kang F W, Hu Y H, Wu H Y, Ju G F, Mu Z F, Li N N 2011 J. Rare Earths 29 837

    [9]

    Zhang J H, Zhu D Q, Wang J X 2012 Semicond. Optoelectron. 33 667 (in Chinese) [张锦华, 朱大庆, 王加贤 2012 半导体光电 33 667]

    [10]

    Li Y Q, Steen J, Krevel J, Botty G, Delsing A, DiSalvo F, With G, Hintzen H 2006 J. Alloy. Compd. 417 273

    [11]

    Yang J J, Wang T, Chen D C, Chen G D, Liu Q L 2012 Mater. Sci. Eng. B 177 1596

    [12]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y, Mu Z F 2013 J. Lumin. 135 113

    [13]

    Spassky D, Mikhailin V, Nazarov M, Ahmad-Fauzi M, Zhbanov A 2012 J. Lumin. 132 2753

    [14]

    Wang W X, Pang P P, Cheng Z Y, Hou Z Y, Li C X, Lin 2011 ACS Appl. Mater. Inter. 3 3921

    [15]

    Treadaway M J, Powell R C 1974 J. Chem. Phys. 61 4003

    [16]

    Kang F W, Hu Y H, Wu H Y, Ju G F 2011 Chin. Phys. Lett. 28 107201

    [17]

    Zorenko Y, Pashkovsky M, Voloshinovskii A, Kuklinski B 2006 J. Lumin. 116 43

    [18]

    Wu H Y, Hu Y H, Kang F W, Li N N, Ju G F, Mu Z F, Yang Z F 2012 J. Am. Ceram. Soc. 95 3214

    [19]

    Wu H Y, Hu Y H, Kang F W, Chen L, Wang X J, Ju G F, Mu Z F 2011 Mater. Res. Bull. 46 2489

    [20]

    Jin Y H, Hu Y H, Chen L, Wang X J, Mu Z F, Wu H Y, Ju G F 2013 Radiat. Meas. 51-52 18

    [21]

    Yang P P, Quan Z W, Li C X, Lian H Z, Huang S S, Lin J 2008 Micropor. Mesop. Mat. 116 524

    [22]

    Gao Y, L Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 078802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 61 078802]

    [23]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 61 107804]

    [24]

    Liu Z W, Liu Y L, Yuan D S, Zhang J X, Rong J H, Huang L H 2004 J. Inorg. Chem. 20 1433 (in Chinese) [刘正伟, 刘应亮, 袁定胜, 张静娴, 容建华, 黄浪欢 2004 无机化学学报 20 1433]

    [25]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2012 Appl. Phys. B 107 833

    [26]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2013 Mater. Sci. Eng. B 178 477

    [27]

    Kang F W, Hu Y H, Wu H Y, Mu Z F, Ju G F, Fu C J, Li N N 2012 J. Lumin. 132 887

    [28]

    Wu H Y, Hu Y H, Kang F W, Li N N 2012 J. Mater. Res. 27 959

    [29]

    Shi S K, Gao J, Zhou 2008 Opt. Mater. 30 1616

    [30]

    Peterson R G, Richard C. 1978 J. Lumin. 16 285

    [31]

    Shannon R D 1976 Acta Crystallogr A 32 751

    [32]

    Nazarov M V, Tsukerblat B S, Popovici E J, Jeon D Y J 2004 Phys. Lett. A 330 291

    [33]

    Blasse G 1973 Chem. Phys. Lett. 20 573

    [34]

    Hebbink G A, Grave L, Woldering L A, Reinhoudt D N, van Veggel F C M J 2003 J. Phys. Chem. 107 2483

    [35]

    Vergeer P, Vlugt T J H, Kox M H F, Den Hertog M I, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119

    [36]

    Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids 64 841

    [37]

    Balaji S, Mandal A K, Annapurna K 2012 Opt. Mater. 34 1930

    [38]

    Treadaway M J, Powell R C 1975 Phys. Rev. B 11 862

    [39]

    Peng H S, Song H W, Chen B J, Wang J W, Lu S Z 2003 J. Chem. Phys. 118 3277

    [40]

    Song H W, Yu L X, Lu S Z, Wang T, Liu Z X 2004 Appl. Phys. Lett. 85 470

    [41]

    Riwotzki K, Haase M 2001 J. Phys. Chem. 105 12709

  • [1] 高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 单颗粒NaYF4核壳结构的能量传递特性.  , 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [2] 赵旺, 平兆艳, 郑庆华, 周薇薇. 白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为.  , 2018, 67(24): 247801. doi: 10.7498/aps.67.20181523
    [3] 吕兆承, 李营, 全桂英, 郑庆华, 周薇薇, 赵旺. 近紫外宽带激发LED用红色荧光粉(Gd1-xEux)6(Te1-yMoy)O12的制备与性能.  , 2017, 66(11): 117801. doi: 10.7498/aps.66.117801
    [4] 苏小娜, 万英, 周芷萱, 吐沙姑·阿不都吾甫, 胡莲莲, 艾尔肯·斯地克. Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递.  , 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [5] 熊晓波, 刘万里, 袁曦明, 刘金存, 宋江齐, 梁玉军. SrZn2(PO4)2:Sn2+,Mn2+荧光粉的发光性质及其能量传递机理.  , 2015, 64(24): 247801. doi: 10.7498/aps.64.247801
    [6] 熊晓波, 袁曦明, 刘金存, 宋江齐. Na2SrMg(PO4)2: Ce3+, Mn2+荧光粉的发光性质及其能量传递机理.  , 2015, 64(1): 017801. doi: 10.7498/aps.64.017801
    [7] 米瑞宇, 夏志国, 刘海坤. Ce3+, Mn2+共掺的Ca4Y6 (SiO4)6F2的发光性质和能量传递.  , 2013, 62(13): 137802. doi: 10.7498/aps.62.137802
    [8] 毕长虹, 孟庆裕. CaWO4:Sm3+荧光粉的发光性质及其能量传递机理.  , 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [9] 桑士晶, 吕树臣, 曲秀荣, 杨晓旭, 张丽丽. 纳米晶ZrO2:Eu3+-Bi3+的制备及Bi3+敏化Eu3+特征发射的研究.  , 2012, 61(22): 227801. doi: 10.7498/aps.61.227801
    [10] 钟瑞霞, 张家骅, 李明亚, 王晓强. Eu2+, Cr3+共掺杂的MAl12O19 (M=Ca, Sr, Ba)的发光性质及能量传递.  , 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [11] 王倩, 慈志鹏, 王育华, 朱革, 温艳, 刘碧桃, 阙美丹. Mg5SnB2O10:Eu3+, Bi3+—-一种用于发光二极管的红色荧光粉的制备及其发光性能的研究.  , 2012, 61(21): 217802. doi: 10.7498/aps.61.217802
    [12] 孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭. Eu3+掺杂CaWO4红色荧光粉发光性质的浓度依赖关系研究.  , 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [13] 冯晓辉, 孟庆裕, 孙江亭, 吕树臣, 孙立男. Eu3+掺杂Gd2W2O9和Gd2(WO4)3纳米荧光粉发光性质研究.  , 2011, 60(3): 037806. doi: 10.7498/aps.60.037806
    [14] 杨志平, 杨广伟, 王少丽, 田 晶, 李盼来, 李 旭. Eu2+,Mn2+在BaZnP2O7中的发光及Eu2+→Mn2+能量传递.  , 2008, 57(1): 581-585. doi: 10.7498/aps.57.581
    [15] 陈敢新, 张勤远, 杨钢锋, 杨中民, 姜中宏. Tm3+/Ho3+共掺碲酸盐玻璃的2.0μm发光特性及能量传递.  , 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [16] 石冬梅, 张勤远, 杨钢锋, 姜中宏. Tm3+/Ho3+共掺镓铋酸盐玻璃1.47μm发光特性和能量传递的研究.  , 2007, 56(5): 2951-2957. doi: 10.7498/aps.56.2951
    [17] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光.  , 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [18] 符史流, 尹 涛, 丁球科, 赵韦人. Eu3+掺杂的Sr2CeO4发光材料的光致发光研究.  , 2006, 55(9): 4940-4945. doi: 10.7498/aps.55.4940
    [19] 孙世菊, 滕 枫, 徐 征, 张延芬, 侯延冰. 聚乙烯基咔唑与Alq3混合薄膜的发光性能与能量传递过程.  , 2004, 53(11): 3934-3939. doi: 10.7498/aps.53.3934
    [20] 李丹, 吕少哲, 陈宝玖, 王海宇, 唐波, 张家骅, 侯尚公, 黄世华. Y2O3:Eu纳米晶中能量传递相互作用的研究.  , 2001, 50(5): 933-937. doi: 10.7498/aps.50.933
计量
  • 文章访问数:  8941
  • PDF下载量:  863
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-23
  • 修回日期:  2013-06-14
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map