搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炸药爆轰产物Jones-Wilkins-Lee状态方程不确定参数

王言金 张树道 李华 周海兵

引用本文:
Citation:

炸药爆轰产物Jones-Wilkins-Lee状态方程不确定参数

王言金, 张树道, 李华, 周海兵

Uncertain parameters of Jones-Wilkin-Lee equation of state for detonation products of explosive

Wang Yan-Jin, Zhang Shu-Dao, Li Hua, Zhou Hai-Bing
PDF
导出引用
  • Jones-Wilkins-Lee (JWL)状态方程是一种不显含化学反应、由实验方法确定参数的半经验状态方程, 能比较精确地描述爆轰产物的膨胀驱动做功过程. 在JWL状态方程中有多个未知(不确定)参数需要确定. 传统的确定JWL状态方程参数的方法是调参数, 人为因素影响较大, 无法给出参数的不确定性信息. 本文利用贝叶斯分析方法研究了炸药的不确定参数, 该方法能够基于以往的认识、实验和模拟数据标定(calibration)不确定参数. 在本文结果中, 不确定参数的后验分布均值与文献结果相符合, 基于参数标定结果的数值模拟90%置信区间完全包含实验数据. 数值标定结果说明贝叶斯参数标定适用于确定样品炸药的JWL状态方程参数. 特别是, 在本文JWL状态方程参数标定过程中极大地减少了人为因素的影响.
    Equation of state of detonation products possesses various types of mathematical expressions which describe the relation between pressure and volume. Jones-Wilkin-Lee (JWL) equation of state is a widely used equation of state of detonation products because of its simplicity in hydrodynamic calculations. The JWL equation of state may accurately describe the process of expansion drive of detonation products. The JWL equation of state contains parameters, and describe the relation among the volume, energy and pressure of detonation products. These parameters may be determined by detonation experimental data and numerical method. Traditional numerical method is adjusting parameters based on experimental data and numerical experience. Obviously, artificial ingredient may affect the calibrating result in traditional method. This paper uses the Bayesian method to determine the unknown (uncertain) parameter of JWL equation of state for detonation products. The method can calibrate the uncertain parameters based on the known parameter information, the experimental and simulating data. The results of the paper are consistent with those in the reference papers. By theoretical analysis the calibration result accords with the physical signification of the parameters of JWL equation of state. The epistemic uncertainty is slightly reduced. The calibration result collects all the parameter information in the prior parameter information, experimental data and numerical results. The experimental data are totally included in a 90% confidence interval of simulation. The numerical result shows that this method can be used to study the uncertain parameter of JWL equation of state for some sample explosives. Especially, the method reduces the artificial ingredient in the parameter calibration.
      通信作者: 王言金, wang_yanjin@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11371069,11372052,11472060)、北京应用物理与计算数学研究所所长基金(批准号:ZYSZ1518-13)和中国工程物理研究院科学技术发展基金(批准号:2013A0101004)资助的课题.
      Corresponding author: Wang Yan-Jin, wang_yanjin@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11371069, 11372052, 11472060), the Youth Foundation of Institute of Applied Physics and Computational Mathematics, China (Grant No. ZYSZ1518-13), and the Science Foundation of China Academy of Engineering Physics (Grant No. 2013A0101004).
    [1]

    Green L, Lee E, Mitchell A, Tipton R, van Thiel M, Finger M 1993 UCRL-89664 CA: Lawrence Livemore National Laboratory

    [2]

    Ralph M 2015 LA-UR-15-29536 Los Alamos National Laboratory

    [3]

    Kury J W, Hornig H C, Lee E L, Mcdonnel J L, Ornellas D L, Finger M, Strangl F M, Wilkins M L 1966 Proceedings of the 4th International Symposium on Detonation White Oak, Maryland, October 12-15, 1965 p3

    [4]

    Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: national defence Publication Company) p286 (in Chinese) [孙承伟, 卫玉章, 周之奎 2000 应用爆轰物理 (北京:国防工业出版社) 第286页]

    [5]

    Zhou Z, Nie J, Guo X, Wang Q 2015 Chin. Phys. Lett. 32 016401

    [6]

    Jiang H M, Zhang R Q 1998 Journal of Ballistics 10 25 (in Chinese) [江厚满, 张若棋 1998 弹道学报 10 25]

    [7]

    Kennedy M, OHagan A 2001 J. Roy. Stat. Soc. B 68 425

    [8]

    Yu D S, Zhao F, Tan D W, Peng Q X, Fang Q 2006 Explosion And Shock Waves 26 140 (in Chinese) [虞德水, 赵锋, 谭多望, 彭其先, 方青 2006 爆炸与冲击 26 140]

    [9]

    Lee E L, Hormig H C, Kury J W 1968 UCRL-50422 CA: Lawrence Livemore National Laboratory

    [10]

    Souers P C, Wu B, Haselman L C 1994 Detonation equation of state at LLNL CA: Lawrence Livermore National Laboratory.

    [11]

    Ling Y, Mullins J, Mahadevan S 2014 J. Comput. Phys. 276 665

    [12]

    Zhang S D, Zhou H B, Liu W T 2005 GF Report No. GF-A0091252 (in Chinese) [张树道, 周海兵, 刘文韬 2005 GF 报告, 编号: GF-A0091252]

    [13]

    Zhang S W, Hua J S, Liu C L, Han C S, Wang D S, Sun X L, Zhang Z T 2004 Explosion and Shock Waves 24 219 (in Chinese) [张世文, 华劲松, 刘仓理, 韩长生, 王德生, 孙学林, 张振涛 2004 爆炸与冲击 24 219]

    [14]

    Hallqui J O 1993 UCRL-MA-110630 CA: Lawrence Livermore National Laboratory, p148

    [15]

    Liu Q, Wang R L, Lin Z, Wen W Z 2013 Explosion and Shock Waves 33 647 (in Chinese) [刘全, 王瑞利, 林忠, 温万治 爆炸与冲击 33 647]

    [16]

    Wang R L, Liu Q, Wen W Z 2015 Explosion and Shock Waves 35 9 (in Chinese) [王瑞利, 刘全, 温万治 2015 爆炸与冲击 35 9]

  • [1]

    Green L, Lee E, Mitchell A, Tipton R, van Thiel M, Finger M 1993 UCRL-89664 CA: Lawrence Livemore National Laboratory

    [2]

    Ralph M 2015 LA-UR-15-29536 Los Alamos National Laboratory

    [3]

    Kury J W, Hornig H C, Lee E L, Mcdonnel J L, Ornellas D L, Finger M, Strangl F M, Wilkins M L 1966 Proceedings of the 4th International Symposium on Detonation White Oak, Maryland, October 12-15, 1965 p3

    [4]

    Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: national defence Publication Company) p286 (in Chinese) [孙承伟, 卫玉章, 周之奎 2000 应用爆轰物理 (北京:国防工业出版社) 第286页]

    [5]

    Zhou Z, Nie J, Guo X, Wang Q 2015 Chin. Phys. Lett. 32 016401

    [6]

    Jiang H M, Zhang R Q 1998 Journal of Ballistics 10 25 (in Chinese) [江厚满, 张若棋 1998 弹道学报 10 25]

    [7]

    Kennedy M, OHagan A 2001 J. Roy. Stat. Soc. B 68 425

    [8]

    Yu D S, Zhao F, Tan D W, Peng Q X, Fang Q 2006 Explosion And Shock Waves 26 140 (in Chinese) [虞德水, 赵锋, 谭多望, 彭其先, 方青 2006 爆炸与冲击 26 140]

    [9]

    Lee E L, Hormig H C, Kury J W 1968 UCRL-50422 CA: Lawrence Livemore National Laboratory

    [10]

    Souers P C, Wu B, Haselman L C 1994 Detonation equation of state at LLNL CA: Lawrence Livermore National Laboratory.

    [11]

    Ling Y, Mullins J, Mahadevan S 2014 J. Comput. Phys. 276 665

    [12]

    Zhang S D, Zhou H B, Liu W T 2005 GF Report No. GF-A0091252 (in Chinese) [张树道, 周海兵, 刘文韬 2005 GF 报告, 编号: GF-A0091252]

    [13]

    Zhang S W, Hua J S, Liu C L, Han C S, Wang D S, Sun X L, Zhang Z T 2004 Explosion and Shock Waves 24 219 (in Chinese) [张世文, 华劲松, 刘仓理, 韩长生, 王德生, 孙学林, 张振涛 2004 爆炸与冲击 24 219]

    [14]

    Hallqui J O 1993 UCRL-MA-110630 CA: Lawrence Livermore National Laboratory, p148

    [15]

    Liu Q, Wang R L, Lin Z, Wen W Z 2013 Explosion and Shock Waves 33 647 (in Chinese) [刘全, 王瑞利, 林忠, 温万治 爆炸与冲击 33 647]

    [16]

    Wang R L, Liu Q, Wen W Z 2015 Explosion and Shock Waves 35 9 (in Chinese) [王瑞利, 刘全, 温万治 2015 爆炸与冲击 35 9]

  • [1] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演.  , 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [2] 李诗尧, 于明. 固体炸药爆轰的一种考虑热学非平衡的反应流动模型.  , 2018, 67(21): 214704. doi: 10.7498/aps.67.20172501
    [3] 颜冰, 黄思训, 冯径. 大气边界层模式中随机参数的反演与不确定性分析.  , 2018, 67(19): 199201. doi: 10.7498/aps.67.20181014
    [4] 于明, 刘全. 凝聚炸药爆轰波在高声速材料界面上的折射现象分析.  , 2016, 65(2): 024702. doi: 10.7498/aps.65.024702
    [5] 李倩倩, 阳凡林, 张凯, 郑炳祥. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法.  , 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [6] 于明, 孙宇涛, 刘全. 爆轰波在炸药-金属界面上的折射分析.  , 2015, 64(11): 114702. doi: 10.7498/aps.64.114702
    [7] 周洪强, 于明, 孙海权, 董贺飞, 张凤国. 炸药爆轰的连续介质本构模型和数值计算方法.  , 2014, 63(22): 224702. doi: 10.7498/aps.63.224702
    [8] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏. 透射光栅谱仪测谱不确定度分析.  , 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [9] 赵艳红, 刘海风, 张其黎. 高温高压下爆轰产物中不同种分子间的相互作用.  , 2012, 61(23): 230509. doi: 10.7498/aps.61.230509
    [10] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计.  , 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [11] 颜鹏程, 侯威, 钱忠华, 何文平, 孙建安. 基于贝叶斯理论的全球海温异常对500 hPa 温度场的影响分析.  , 2012, 61(13): 139202. doi: 10.7498/aps.61.139202
    [12] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究.  , 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [13] 李农, 李建芬, 刘宇平. 不确定混沌系统的反同步与参数辨识.  , 2010, 59(9): 5954-5958. doi: 10.7498/aps.59.5954
    [14] 李东, 张小洪, 杨丹, 王时龙. 参数不确定永磁同步电机混沌的模糊控制.  , 2009, 58(3): 1432-1440. doi: 10.7498/aps.58.1432
    [15] 李 农, 李建芬, 刘宇平, 马 健. 基于线性反馈控制的不确定混沌系统的参数辨识.  , 2008, 57(3): 1404-1408. doi: 10.7498/aps.57.1404
    [16] 王 划, 韩正之, 章 伟, 谢七月. 具有不确定参数的Liu混沌系统的同步.  , 2008, 57(5): 2779-2783. doi: 10.7498/aps.57.2779
    [17] 贾飞蕾, 徐 伟. 一类参数不确定混沌系统的延迟同步.  , 2007, 56(6): 3101-3106. doi: 10.7498/aps.56.3101
    [18] 赵艳红, 刘海风, 张弓木. 基于统计物理的爆轰产物物态方程研究.  , 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [19] 王兴元, 武相军. 不确定Chen系统的参数辨识与自适应同步.  , 2006, 55(2): 605-609. doi: 10.7498/aps.55.605
    [20] 文 潮, 金志浩, 李 迅, 孙德玉, 关锦清, 刘晓新, 林英睿, 唐仕英, 周 刚, 林俊德. 炸药爆轰制备纳米石墨粉储放氢性能实验研究.  , 2004, 53(7): 2384-2388. doi: 10.7498/aps.53.2384
计量
  • 文章访问数:  8447
  • PDF下载量:  365
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-01
  • 修回日期:  2016-03-02
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map